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Abstract

Toxic Language and Target Detection under Sparsity

by Modeling Group-Specific Representations

Soumyajit Gupta, PhD
The University of Texas at Austin, 2025

SUPERVISORS: Matthew Lease, Maria De-Arteaga

In the natural language processing (NLP) domain of modeling and mitigat-

ing toxic language, it is common to encounter scenarios where multiple tasks and/or

objectives are of interest. Multi-Task Learning (MTL) and Multi objective

Optimization (MOO) are well-established approaches that have seen increasing

use with toxic language modeling in recent years [69, 86, 110, 129, 152]. My disser-

tation consists of two lines of related work on toxic language modeling in NLP based

on MTL (Problem 1 below) and MOO (Problem 2 below). While my application

and experiments focus exclusively on toxic language modeling in NLP, my modeling

approaches are more general and could potentially have broader applicability.

PROBLEM 1: MULTI-TASK LEARNING. In developing NLP models for toxicity

detection [4, 131, 143], it is often assumed that toxic language manifests similarly

across different demographic targeted groups. This typically leads to pooling of data

from all groups in model training to learn general patterns of toxicity. However,

toxic language directed at different groups can vary quite markedly. Furthermore,

an imbalanced group distribution in datasets risks over-fitting to majority groups,

potentially at the expense of systematically weaker model performance on minority
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group(s). Thus, a “one-size-fits-all” modeling approach maybe sub-optimal, raising

concerns of algorithmic fairness [4, 110, 129]. At the same time, radically siloing off

datasets for each target group would prevent models from learning broader linguistic

patterns of toxicity across different groups being targeted. To characterize this phe-

nomenon where toxic language exhibits both important commonalities and important

differences, we borrow the popular phrase of “same same, but different” [153].

To address the above issues, we develop a Conditional MTL (CondMTL)

framework (Chapter 3), which combines shared and task-specific layers, allowing the

model to specialize in detecting toxic language for different target groups while lever-

aging shared patterns across groups. In this setting, each MTL task corresponds to

detecting toxic language targeting a specific group. Shared layers benefit from cross-

group training, while task-specific layers are trained only on group-specific posts.

Given the challenge of sparse labeling for each task i.e., only a small fraction of the

data is labeled for each task, the CondMTL framework is specifically designed to oper-

ate under such setting. We also extend CondMTL to the SAJ-MTL (Stakeholder-

Aware Joint MTL) framework (Chapter 4), that accounts for the interaction of

multiple stakeholder groups, i.e., annotators and target, to better model the perceived

toxicity directed at varied groups. Additionally, the model accounts for inter-group

and intra-group disagreements between annotators. Furthermore, the framework is

optimized for scalable computational efficiency w.r.t. increasing group cardinality.

The results show improved predictive performance, fairness across target groups, and

scalability compared to the latest SoA baselines.

PROBLEM 2: BALANCING COMPETING OBJECTIVES. In parallel to Problem

1, accurately detecting the demographic group targeted by toxic language is crucial,

since the expression of toxic language varies by target group. A fair detection system

should consider the risks of disparate impact of groups. Unlike traditional fairness

tasks (e.g., college admissions) that assume asymmetric error costs, errors in target

detection are symmetric. For example, we assume that misclassifying a post targeting
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group-Black as group-Latinx is just as problematic as the reverse. This calls for a

fairness objective based on equal accuracy across all groups, i.e., Accuracy Parity

(AP) [160]. However, platforms with skewed user demographics face a trade-off:

enforcing equal accuracy for every demographic group may may reduce accuracy for

dominant group(s). Just as democratic governance must balance majority rule vs.

minority rights, platforms may need to strike a balance between maximizing absolute

fairness for all user groups vs. ensuring sufficient service for the majority user group(s)

so that the platform can remain in business to serve everyone.

Given this setting, we develop a fairness loss function and a MOO framework.

While AP is often mentioned as a fairness metric of potential interest [9, 61, 100],

there has been scant research to actually operationalize it. To address this, we pro-

pose a new fairness measure, Group Accuracy Parity (GAP) (Chapter 6), which

is differentiable and equivalent to AP, under a binary group setting. To balance this

fairness measure vs. overall accuracy (driven by the majority group(s)), we develop a

multi-objective optimization (MOO) framework HNPF [135] with numerical correct-

ness checks [53]. We further extend HNPF to a scalable SUHNPF [54] frameowrk

(Chapter 5) that can act as hypernetworks for training large scale neural models.

This enables us to learn the full trade-off space between GAP vs. Overall Accuracy

during training, which the user could then flexibly browse at run-time. We conduct

experiments and report results for the task of toxic language detection across two

demographic groups. We also make extensions to the GAP measure (Chapter 7) to

account for multiple demographic groups, and conduct different experiments for the

task of target-group detection, where we argue for the importance of symmetric error

costs. Additionally, we show an incompatibility result between the Accuracy Parity

and Equalized Odds measures, addressing a common misconception that balancing

equalized odds across groups automatically leads to balanced accuracy across groups.
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Chapter 1: Introduction

The nature and form of toxic language pertaining to different demographic

groups can vary quite markedly across groups. The target group adds a layer of

context because what might be considered toxic when directed at one demographic

group might not carry the same meaning and significance when directed at another.

A “one-size-fits-all” modeling approach may yield sub-optimal performance by risk-

ing over-fitting forms of toxic language most relevant to the majority group(s), po-

tentially at the expense of systematically weaker model performance on minority

group(s), thereby raising concerns of algorithmic fairness [4, 110, 129]. Therefore,

we require careful consideration of potential biases and disparities in the detection of

toxic content across different demographic groups.

TLDR: Given empirical evidence from prior works [38, 50], this thesis posits
that the perception of toxicity is a joint interaction of stakeholder identities
i.e., annotators and target demographics in our case. We propose a deployable
toxicity detection pipeline with two parallel framework paths: a) Identification
of target demographics from posts; and b) Group conditioned toxicity detection
from posts. We propose and develop novel architectural designs and evaluation
measures (with numerical correctness checks) for model training, and show that
these methods lead to improved detection of group-targeted toxicity, while
operating on sparse labels, with improved memory and runtime efficiency.

When using terms such as “majority” or “minority”, it is important to distin-

guish between the statistical minority vs. a societal or social minority. By statistical

majority, we refer to the group(s) that constitutes the largest sized constituent group

in a given dataset. In contrast, by societal majority, we refer to the group(s) that

may hold the most significant social, cultural and political influence within a society,

reflecting historical power dynamics and social structures.

For example, according to the 2022 US census [18], the US Caucasian (White)

population represents the statistical majority of the US population. We would also
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assert that the same population is generally understood to represent the societal

majority group as well, w.r.t. power and influence. A dataset constructed by random

sampling the US population would likely yield the same statistical majority group.

Alternatively, one could choose to oversample a societal minority group of interest in

order to focus on them in particular, in which case that group might then represent

the statistical majority in the dataset. How we sample, however, does not alter

which group represents the societal majority. If fairness considerations seek to remedy

historical injustices, for example, then we are likely more concerned about the societal

majority rather than the statistical majority. This, in turn, may lead us to curate

a dataset by such oversampling as described above, such that a societal minority

may be elevated to become the statistical majority. In this manner, that group

may receive greater benefit from algorithms optimizing overall performance across all

instances in a dataset. In our work, we explicitly focus on societal majority

vs. minority to account for fairness in seeking to aid vulnerable groups and

historically marginalized communities.

Multi-Task Learning (MTL) treats toxicity detection as a collection of re-

lated tasks, each focused on detecting toxicity within a specific demographic group.

By jointly training a model to perform multiple group-specific tasks with shared and

task specific parameters, we can leverage shared information across groups while also

capturing the unique characteristics and nuances of toxicity within each demographic

group. This approach promotes the development of models that can generalize well

across groups while still accommodating the specificities of each group’s language

and cultural context, thereby having the potential to achieve better predictive per-

formance on each task than training separate models for each task [19].

Accurately detecting which demographic group is being targeted by toxic lan-

guage is another important task. A fair and balanced target detection model involves

equalizing false positive and false negative rates, i.e., balanced error across groups

[25, 61], across different minority groups or other targeted vulnerable population,

thereby proving fairness and protection to under-represented groups. However, if
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the interests and needs of the majority users in a platform are not effectively ad-

dressed, there is a risk of losing a significant portion of the user base. Striking the

right balance between catering to the majority’s preferences and maintaining a fair

and inclusive environment becomes crucial, and should be decided by stakeholders

(platform administrators, content moderators etc.).

Multi-Objective Optimization (MOO) treats target detection as a single

classification task to simultaneously optimize for overall accuracy while minimizing

the disparities across different demographic group, by training a single model with

shared parameters. By tuning the shared parameters, the model learns Pareto trade-

off between tasks, where one task cannot improve without detriment to the other

[94]. One can trade-off between overall accuracy and group-fairness measures, thereby

providing the stakeholders with varying control on the desired deployment policy.

1.1 Motivation for Toxic Language Detection via MTL

Differential subgroup validity (DsGV) [67], also known as subgroup fair-

ness or subgroup equity, refers to the property of a machine learning model or al-

gorithm that ensures consistent and fair performance across different subgroups, by

evaluating and mitigating any disparities or biases in the model’s predictions for dif-

ferent subgroups. In the context of demographic-targeted toxicity detection, DsGV

aims to ensure that the toxicity detection models do not disproportionately favor or

penalize specific groups based on their demographic attributes, thereby having con-

sistent performance across various demographic groups. Studies by Sap et al. [129],

have highlighted the importance of DsGV in hate speech detection. They emphasize

the need to assess and mitigate biases in hate speech detection models to prevent

unfair treatment of certain demographic groups.

For standard classification tasks, one seeks to simply maximize overall pre-

dictive accuracy. However, when different demographic groups are involved within

the dataset, an overall measure does not suffice due to the “same same but differ-
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ent” nature of language. The model often misidentifies a harmless minority linguistic

pattern as offensive, thereby marking it toxic. There has been a growing interest

in using MTL for hate speech and toxicity detection, which involves identifying and

flagging online content that is abusive, derogatory, or discriminatory towards a par-

ticular group of people [69, 86, 152]. Thus, in this group-targeted setting, we ideally

need to optimize the following: a) Overall Measure: High predictive performance of

the model, independent of the group; or b) Group Specific Measure: High predictive

performance of the model on specific groups.

In this group-targeted setting (be it Hate Speech Classification [86], Toxicity

Detection [143], Fake News Identification [81], Media Bias Estimation [137], Misin-

formation Detection [89] etc.), the labels for each task are often sparse, meaning

that only a small fraction of the data is labeled for each task, making it difficult for

traditional MTL frameworks to operate. Although there exist works to tackle this

issue of sparse labels w.r.t. the loss functions [161] or architectural choices [99], they

are mostly guided by heuristics, with limited numerical correctness checks. As such,

there are inconsistencies in model behavior when the tasks or datasets vary, leading to

the practitioner trying out finite possible model variations to figure out the strategy

to settle on for their application.

In this research (Problem 1), we aim to provide a more principled way of

applying MTL to problem settings involving sparse labels, specifically w.r.t. learning

group-specific representations, such that the model improves group-specific per-

formance over target groups. Therefore, a MTL model is required to maximize

representations of individual groups in each task branch, by handling such sparse la-

beling scenario. The design would lead to selecting only a set of examples in training

batch, relevant to the group, to contribute towards calculating the loss for that group

and effectively adjust neural weights during backpropagation. This would also require

updates to the conventional labeling schema to account for group information for the

network to operate on. Fig. 1.1 shows the ideal MTL setup for group-targeted toxi-

city detection setting. The shared layers are responsible for learning the general and
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Figure 1.1: Expected Behavior of a Multi-Task Learning (MTL) framework in a
group-targeted Toxicity detection setting. The shared layer learns general toxicity
properties, while the task-specific layers learn the group-relevant properties of lin-
guistic toxicity. Each task can now maximize it’s performance corresponding to it’s
group, while avoiding overfitting and improved generalization.

overall linguistic toxicity properties, while the task-specific layers picks up the group-

specific attributes, thereby catering to each group’s predictive performance apart from

having high overall predictive accuracy. We aim to maximize group specific toxicity

detection performance via the MTL model for all the demographic-target groups.

While group-targeted toxicity detection is important, prior work [50] has also

empirically demonstrated that the perceived toxicity is a joint interaction between

annotators and targets, as annotators belonging to the same demographic group as

the target have a better perception of toxicity due to their lived experience. We

therefore take this annotators-target interaction into our modeling approach, which

enhances the model’s ability to handle multiple stakeholder interactions jointly. We

also explicitly account for both inter-group and intra-group disagreements among

annotators, following the perception that not only people think differently across

demographics, but also individuals within a demographic group might not always

think alike. This joint modeling approach enables the system to capture more nuanced

perceptions of toxicity as directed at varied target groups, providing a more principled

way of learning group-specific representations. We also optimize our framework for
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scalability as group cardinality increases, addressing challenges related to expanding

demographic categories without compromising computational efficiency.

1.2 Motivation for Balanced Target Detection via MOO

The expression of toxicity varies by target, hence the need for a model to de-

tect group-targeted toxicity. This requires target detection as a pre-processing step,

wherein such a target detection system should be fair, providing comparable per-

formance across different groups to ensure non-disparate treament. For well-known

fairness tasks associating with providing services (e.g., college admission [72], recidi-

vism [31], hiring [2] etc.), we typically assume that errors have asymmetric costs (e.g.,

errors in being mistakenly granted admission (moderately erroneous) vs. being mis-

takenly denied (severely erroneous) are not equal). However, for our target detection

task, errors instead appear to be symmetric: if a toxic post truly targets group-A

but is mistakenly detected as targeting group-B, this would be equally bad as a toxic

post targeting group-B being mistakenly detected as targeting group-A. This calls for

a different fairness objective having symmetric error costs across labels and provide

equal accuracy across all demographic groups in target detection.

A standard target detection system would maximize predictive accuracy, which

in most cases tends to be biased towards the majority demographic group(s). How-

ever, for a fair target detection system, only the overall measure does not suffice, since

we want the model to be equally predictive for all groups involved, ensuring fairness

i.e., non-disparate impact amongst groups. There has been growing interest in using

MOO for toxicity detection, which involves achieving fairness through some balancing

measure across all groups [5, 95, 144]. Thus in this group-targeted setting, we ideally

need to optimize the following: a) Overall Measure: High predictive performance of

the model, independent of the group; or b) Balancing Measure: Similar predictive

measures across all groups involved.

Accuracy Parity [160] or Accuracy Difference [25] are nomenclatures of the
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same fairness measure, which demands equal predictive accuracy across all groups in-

volved, thereby ensuring that a classifier is not biased towards the majority group by

giving equal exposure to all groups. While achieving a balanced error rate across all

groups is an admirable goal, it is important to acknowledge the practical challenges

and trade-offs involved. The trade-off between favoring the majority rule vs. minority

rights decision should be a collaborative effort involving various stakeholders (plat-

form administrators, content moderators, and community), who are better positioned

to understand the unique dynamics, priorities, and values of the platform’s user base.

MOO comes into play here, by allowing us to navigate the trade-off space between

such competing objectives.

Figure 1.2: Expected Behavior of a Multi-Objective Optimizing (MOO) framework
in a group-targeted Toxicity detection setting. The shared layer learns to trade-
off between flavors toxic properties, depending on the trade-off. Maximize overall
detection accuracy can fit to majority group and poor performance on minority group.
Maximizing fairness leads to equal performance across groups, at the cost of drop in
overall accuracy. Alternatively, one might choose some trade-off balance in between
the two extremes.

In this research (Problem 2), we aim to address this fairness concern in

balanced target detection across demographic groups, via our GAP [57] measure. Ad-

ditionally, the measure is differentiable in nature thereby allowing it to be used to

optimize gradient based models. We use GAP in conjunction with Overall Accuracy

to optimize an MOO model to map out the feasible trade-off space. Fig. 1.2 shows

the ideal MOO setup for group-targeted toxicity detection setting. The shared lay-

ers are responsible for learning ideal trade-off between the tasks of overall detection

accuracy vs. a group-fairness measure. In other words, the model is trading off be-
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tween overall performance vs. equal group specific performance along some intended

practical criteria. We extend our GAP measure to a multi-group setting to account

for more than two groups, and ground the importance of this measure compared

to existing ones from a fairness point of view of target-group detection, requiring

symmetric errors. We also show an impposibility results showing that optimizing for

Equalized Odds does not necessarily guarantee balanced accuracy across groups.

1.3 Research Questions and Scope of Work

In this section, we summarize the two key problems to be addressed in this

dissertation work: 1) better toxicity prediction across different demographic groups;

and 2) fair and balanced target detection across different demographics. For each

problem, we describe below the underlying broad research questions and further break

it down into modeling and application cases.

Regarding my publications to date related to my dissertation work, since 2021

we have published three peer-reviewed articles [53, 54, 56] and posted two pre-prints

[57, 135]. Of these five papers, my most recent [56] is related to Problem 1, while the

other four are related to Problem 2. This also reflects the larger amount of work we

have left to complete on Problem 1 vs. Problem 2. Regarding my pre-prints, proposed

work will strengthen one [57], with an aim toward publication, while we do not plan

to pursue publishing the other [135] at this time.

1.3.1 Problem 1: Differential sub-Group Validity (DsGV)

With DsGV [67], the predictive relationship of a data point w.r.t. to its label

varies as a function of its group. One naive way of addressing the issue is to train

individual models from each group, however those representations will be skewed to-

wards the samples pertaining to that specific group and wouldn’t have have any global

sense of language. Furthermore, this would lead to huge computational cost to train

and deploy individual models in the platform. Additionally, works exist to tackle this
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issue of sparse labels w.r.t. either the loss functions [161] or architectural choices [99],

however, they are mostly guided by heuristics, with limited numerical benchmarking.

As such, there are inconsistencies in model behavior when the tasks or datasets vary,

leading to the practitioner trying out finite possible model variations to figure out

the strategy to settle on for their application. Furthermore, current models do not

account for the probabilistic nature of post targets, or consider differences in label-

ing opinions of annotators both at intra- and inter-group level. Our proposed work

aims to address these issues mentioned above by developing architectural and labeling

pipelines that are numerically verified for correctness, independent of dataset. This

work would result in improved group-specific performance measures under different

stakeholder interaction settings.

RQ1: Limitations of applying Traditional MTL to group-specific setting

(Chapter 3 and [56]): a) How does the nature of task labels in traditional MTL

provide barriers to operate under the sparsely labeled group-specific setting, and

thereby lead to Label Contamination? b) Can we propose an updated labeling schema

to provide correct group-specific labels to relevant examples?

RQ2: Addressing group-targeted harm using conditional MTL framework

(Chapter 3 and [56])): a) Given the new schema that avoids Label Contamination,

can we design an updated MTL framework that accounts for conditional backprop-

agation on group-relevant examples? b) Can this proposed framework account for

lower group-specific harm compared to other single-task and multi-task baselines,

w.r.t. evaluation measures for a stakeholder? c) Can the proposed pipeline design

address memory efficiency and model runtime concerns w.r.t. SoA baselines?

RQ3: Joint multiple stakeholders model for improved toxicity prediction

in MTL setting (Chapter 4): a) How can we update the architectural pipeline

of CondMTL to learn a joint model tailored for specific stakeholder (annotator -

target) interactions? b) Can we improve model performance and fairness by taking

into account annotator disagreements both at the inter-group and intra-group level
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to better reflect the perception of toxicity? c) How can existing multi-task learning

architectures be extended to remain scalable and computationally efficient as the

number of task branches (demographic group-pair) increases? d) Can a model better

capture this joint annotator-target interaction via group-conditioned losses compared

to text-augmentation-based approaches?

1.3.2 Problem 2: Balanced Accuracy Across Groups

With Accuracy Parity [160], the model seeks to achieve equal accuracy measure

for all groups involved. The importance of usage of any fairness measures has often

not been discussed in literature in the context of the downstream task. Furthermore,

most existing fairness measures are probabilistic in nature, hence cannot be used

to optimize any gradient-based model. We aim to bridge this gap by proposing

a differentiable fairness measure, practically grounding the need for it in specific

downstream applications where symmetric errors are required.

RQ4: Fairness measure to optimize Accuracy Parity (Chapter 6) and [57]:

a) Can we design a differentiable fairness measure corresponding to Accuracy Parity,

which accounts for balanced accuracy across groups? b) How we use existing MOO

frameworks to approximately and efficiently trace out the trade-off space of competing

measures?

RQ5: GAP measure for balanced detection accuracy across target-groups

(Chapter 7) and [57]: a) From a fairness use-case, how to we ground the importance

for such measure in target-group detection task? b) What are feasible extensions on

the proposed measure to account for multiple demographic groups (beyond binary)?

c) Are Equalized Odds and Accuracy Parity mutually incompatible?

1.3.3 Proposed Toxicity Detection Pipeline

A robust toxicity detection pipeline needs to address both the identification

of target groups and the specific toxicity levels directed toward those groups. To
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achieve this, we propose a two-module system that operates in parallel as shown

in Fig. 1.3. The upper module is a target-group detection system, a multi-label

classifier designed to identify which demographic group(s) are being targeted in a

given post. Since a single post may be aimed at multiple groups, this classifier allows

for flexible, multi-label outputs, ensuring that the model captures all potential target

groups involved. The lower module is a toxicity detection system, which assigns

group-specific toxicity labels, indicating whether a post is toxic when viewed from

the perspective of each targeted group. By splitting these tasks, the pipeline allows

for more nuanced toxicity detection: the output of the target-group detection module

informs the toxicity detection module about which group-specific branches to activate.

This design ensures that the toxicity assessment is contextually aware, meaning it can

differentiate between general toxic language and toxicity that is particularly harmful

when directed at a specific group.

Figure 1.3: Proposed Toxicity Pipeline in our Work. The target-group detection module
and the group-conditioned toxicity detection module work in parallel during model deploy-
ment, and allows for a better perception of toxicity.
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Chapter 2: Problem Setup and Notations

Data: We are given a dataset D ∈ RN×F , with N samples (posts) and F features.

These F dimensional features can be extracted using any off-the-shelf NLP model.

We also have G demographic groups for each post pertaining to the stakeholder sce-

nario we are considering, i.e., annotators (A) and targets (T) of post. Thus each post

can be mapped to an overall (group-agnostic) toxicity label d→ y, as well as multi-

ple group-targeted toxicity labels d → yg,∀g ∈ G, where the overall label y =
⋃

G yg

considers the data to be toxic/non-toxic, irrespective of the group. Due to the nature

of the G independent groups, we have the combined dataset D = D1 ∪D2 ∪ . . . ∪DG

as the union of the demographic specific data points Dg ∈ RNg×F .

MTL Problem Setup for Toxicity Detection of Posts: Our objective is to op-

timize Binary Cross Entropy (BCE), for maximal binary detection accuracy of posts

as toxic (1) or non-toxic (0). We can do it over: a) the entire dataset D; or b) target

demographic group specific data subsets Dg, g ⊆ G. The Single Task (STL) model

MSTL has independent classifiers for each split Dg, while the Multi Task Learning

(MTL) model MMTL has one joint classifier with G+1 branches with G task-specific

branches for each split Dg and one for overall dataset D. Differential sub-Group Va-

lidity (DsGV) [67] arises when the predictive relationship of a data point w.r.t. to its

label varies as a function of its group, i.e., Fg : D
g→ Y . Therefore we want the model

to perform equally across all groups w.r.t. a performance measure. Ideally this would

mean learning one STL model MSTL for each group Dg. However, such individual

and independent classifiers would lack generalization in term of learning general toxic

language properties. Therefore, to address this problem via the model MMTL, we fo-

cus on learning the heterogeniety across groups in each of the task-specific branches,

while leveraging the common properties in the shared layers. Thus MMTL would

learn to achieve high predictive performance across groups addressing DsGV while
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also learning general toxicity characteristics as well over the entire population.

MOO Problem Setup for Target Group Detection: Our objective is to opti-

mize Binary Cross Entropy (BCE), for maximal binary detection accuracy of posts

target group as present (1) or absent (0). This leads to a mapping of a post d to the

groups g that are targeted in it, i.e., Fg : D → G. To ensure fairness in target-group

detection, given the entire dataset D, we want equal performance across all groups

g ∈ G involved. This notion refers to a Pareto trade-off [109], where we are trad-

ing overall detection accuracy over D vs. gaining comparable detection performance

across all groups Dg, i.e., trading off between majority rights vs. minority protections.

Distinction between Problem 1 vs. Problem 2: While for the MTL model

(Problem 1 ) we are targeting improved performance across all groups, in the MOO

model (Problem 2 ) we are balancing performance of target detection across all groups

at the expense of majority/overall performance.
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Chapter 3: Conditional Multi Task Learning

In developing natural language processing (NLP) models to detect toxic lan-

guage [4, 131, 143], we typically assume that toxic language manifests in similar forms

across different targeted groups. For example, HateCheck [123] enumerates templatic

patterns such as “I hate [GROUP]” that we expect detection models to handle ro-

bustly across groups. Moreover, we typically pool data across different demographic

targets in model training in order to learn general patterns of linguistic toxicity across

diverse demographic targets. However, the nature and form of toxic language used to

target different demographic groups can vary quite markedly. Furthermore, an im-

balanced distribution of different demographic groups in toxic language datasets risks

over-fitting forms of toxic language most relevant to the majority group(s), potentially

at the expense of systematically weaker model performance on minority group(s).

This chapter is based on the work: “Same same, but different: Conditional
multi-task learning for demographic-specific toxicity detection”, Gupta, Lee,
De-Arteaga and Lease - published at Web Conf 23.
Online edition: https://dl.acm.org/doi/pdf/10.1145/3543507.3583290

TLDR: Work contributions in this chapter are summarized as follows:

1. We argue the need for group-targeted toxicity detection system compared
to a one-size-fits all model, as toxicity manifests differently across groups.

2. We identify an existing flaw in labeling schema [86] that leads to contami-
nation and misinterpretation of group-targeted toxicity labels.

3. We develop a Conditional MTL (CondMTL) framework to model group-
targeted toxicity, where each task is identifying toxicity for a specific group.

4. Empirical results show improved prediction performance across target
groups vs. SoA MTL baselines, with better runtime and memory footprint.

For this reason, a “one-size-fits-all” modeling approach may yield sub-optimal
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performance and more specifically raise concerns of algorithmic fairness [4, 110, 129].

At the same time, radically siloing off datasets for each different demographic tar-

get group would prevent models from learning broader linguistic patterns of toxicity

across different demographic groups targeted. To characterize this phenomenon in

which toxic language exhibits both important commonalities and important differ-

ences, we borrow the popular phrase of “same same, but different” [153].

More formally, such heterogeneity of toxic language targeting different groups

can be conceptually framed in terms of differential subgroup validity [67]: a relation-

ship f : X → Y mapping the input data X to labels Y may have different predictive

power across groups. The wide diversity of demographics targeted by toxic language,

and the ways in which minority groups may be disproportionately targeted, under-

scores the importance of understanding and recognizing this phenomenon.

From an algorithmic fairness perspective, it has been shown that excluding

sensitive attributes from the features used in prediction, also known as “fairness

through unawareness” is ineffective [33]. Some methods, e.g., adversarial fairness

approaches [159], address this problem by penalizing models from learning relation-

ships that are predictive of sensitive attributes. Others have noted that making use

of such attributes may significantly improve performance for minority groups and

reduce algorithmic bias [71, 85], a reason that is tightly linked to the presence of

differential subgroup validity. Prior work [23] has shown that differential subgroup

validity can be addressed by training models that learn group-specific idiosyncratic

patterns, such as decoupled classifiers [34]. In the context of toxic language detection,

inclusion of demographics has the potential to boost performance in detecting toxic

language targeting the minority group(s) who are less represented in a given dataset.

To address the challenge of differential subgroup validity in toxicity detection,

we propose to model demographic-targeted toxic language via multi-task learning

(MTL). MTL combines shared and task-specific layers, allowing a model to specialize

on relationships relevant to different groups while leveraging shared properties across
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groups. In this setting, each MTL task corresponds to detecting toxic language target-

ing a different group. Shared layers can benefit from training across posts targeting

multiple groups, while task-specific layers are trained only on posts that target each

respective group. For example, if a post targets group-A, it should influence the

shared layers and its own task-specific layers, but not task-specific layers for group-B.

3.1 Label Contamination

RQ (1a). How does the nature of task labels in traditional MTL provide barri-
ers to operate under the sparsely labeled group-specific setting, thereby leading
to Label Contamination?

In the group-targeted classification setting (be it Hate Speech Classification

[86], Toxicity Detection [143], Fake News Identification [81], Media Bias Estimation

[137], Misinformation Detection [89] etc.), the labels for each task are often

sparse, meaning that only a small fraction of the data is labeled for each task. Tradi-

tional MTL (TradMTL) approaches assume that each training point has labels for all

tasks, making it difficult to operate under this sparse label setting. To counter this

issue, Liu et al. [86] employs a fuzzy rule based schema to identify potential groups of

hate targets over examples and update the rule thresholds w.r.t. training error. For

hate speech, typically the hate class is the smaller class with fewer examples, so they

mark all unlabelled examples in their dataset as the larger class, i.e., non-hate, which

leads to the issue of label contamination.

3.1.1 Who is being targeted?

The set of all possible posts contain: a) Either Toxic (T) or Non-Toxic (NT)

posts; b) Targeting neither group; c) Targeting one group ONLY; and d) Target-

ing BOTH groups. The same scenario can be extended to other stakeholder options

w.r.t. their group associations. Given this setting, we would observe the effect as-

signing group-specific labels to different posts in an MTL setup, and analyze the
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interpretation of such labeling schema.

Figure 3.1: Distribution of posts targeting groups. Posts can belong to a) Either
Toxic (T) or Non-Toxic (NT) posts; b) Targeting neither group; c) Targeting one
group ONLY; and d) Targeting BOTH groups.

3.1.2 Contamination Illustration

Following the strategy in Liu et al. [86] for Fig. 3.1, a post targetingGroup A,

irrespective of toxicity label, is assumed to be non-toxic towards Group B as well.

This formulation of the task leads to many posts containing toxic language being

labeled as non-toxic, by the labels marked red as shown in Table 3.1. We argue that

this labeling schema, which blends together the questions is the post toxic? and who

is the target of the post?, leads to label contamination.

Post Traditional MTL Labels Correct Labels
Group A Group B Group A Group B

“I hate Group A” Toxic Non-Toxic Toxic •
“I love Group A” Non-Toxic Non-Toxic Non-Toxic •

Table 3.1: Label contamination occurs in a Traditional MTL label assignment when posts
that target a given (Group A) are assumed to be non-toxic towards any other group (e.g.,
Group B). Red denotes unsupported label assignments, while (•) correctly denotes that
these posts do not contain a label w.r.t. the target Group B.

In order to let the model differentiate between demographic-specific examples,
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we consider group-conditional labels from the set {T, NT, •}, where • is an indica-

tor denoting that the label of the current example is irrelevant/unknown w.r.t. the

group. The Venn diagram in Fig. 3.1 gets updated under the two schema as shown

in Fig. 3.2. Observe that under the Traditional schema, posts exclusively relevant

to Group B are forcibly marked as Non-Toxic (NT) for Group A. In the proposed

Conditional schema we update the labels by marking posts as irrelevant when they

are not targeting a particular group (toxic or otherwise).

(a) Labels for TradMTL w.r.t. Group A (b) Labels for CondMTL w.r.t. Group A

Figure 3.2: Assigned labels for posts w.r.t. Group A. In Traditional setting, posts
belonging toGroup BONLY are marked as Non-Toxic forGroup A. In Conditional
setting, we ignore posts that are not relevant to Group A. Thereby, posts belonging
to Group B ONLY are marked as irrelevant for Group A.

3.1.3 Proposed Labeling Schema

RQ (1b). Can we propose an updated labeling schema to provide correct
group-specific labels to relevant examples?

To illustrate the reasoning for the schema, we show a series of example post

templates and their corresponding labels in Table 3.2. Note that in the traditional

labeling schema, as proposed in Liu et al. [86] and widely followed in the MTL lit-

erature, a) any post that is toxic towards a specific group is considered non-toxic

towards every other group (see rows 2 and 3); and b) any post that is non-toxic to a

group is considered non-toxic towards every other group as well (see rows 5 and 6).

Our conditional schema enables each demographic branch of the CondMTL model to
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conditionally filter out irrelevant examples (both toxic and non-toxic) for each group.

TradMTL Label CondMTL Label
Hypothetical Post Group A Group B Group A Group B

“I hate Group A & Group B” T T T T
“I hate Group A” T NT T •
“I hate Group B” NT T • T
“I love Group A & Group B” NT NT NT NT
“I love Group A” NT NT NT •
“I love Group B” NT NT • NT

Table 3.2: CondMTL group-specific labels vs. TradMTL labels for some posts. T and NT
denote toxic and non-toxic labels, The label (y) denotes the toxicity of a post towards a
target group k. The • indicates unknown toxicity wrt. the given group, whereas TradMTL
methods erroneously assume such training examples are non-toxic.

When considering the template posts from Table 3.2, the TradMTL model

with its labeling schema [86] would correctly backpropagate its losses for the all, men,

and women branches for the example I hate Group A & Group B. Given that this

post does target both Group A and Group B and is toxic, the traditional label (T,

T) is equivalent to the conditional label (T, T). However, the template post I hate

Group A reveals an issue with the traditional labeling schema and the subsequent

information that a TradMTL model would learn; the traditional MTL model would

backpropagate a misleading loss for the Group B branch due to the Group B label

in the traditional label (T, NT) being marked as non-toxic (NT). The traditional

MTL model would erroneously learn that a post which is toxic towards Group A is

nontoxic if it were targeted at Group B, ultimately confusing the model. In contrast,

the CondMTL model avoids backpropagating the loss which may confuse the model

by examining the demographic flag corresponding to the label (T, •) and using it to

compute the loss only for the Group A branch.
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3.2 Conditional MTL Framework

RQ (2a). Given the new schema that avoids Label Contamination, can we de-
sign an updated MTL framework that accounts for conditional backpropagation
on group-relevant examples?

We describe our Conditional MTL [56] function that can operate on our up-

dated labeling schema. The architecture is similar to Traditional MTL, with the

change of the loss function that allows the model to incorporate DsGV w.r.t. the

demographic groups. Our proposed function allows the model to learn common fla-

vors of toxic language in the shared layers, while learning the relevant group-toxicity

properties in the task-specific layers of the MTL architecture.

3.2.1 CondMTL Algorithm

The Conditional loss function is a selective variant of the standard weighted

Binary Cross Entropy (wBCE). wBCE is a variation of BCE that re-weights the error

for the different classes proportional to their inverse label frequency in the data [83].

This strategy is available in popular packages like SkLearn [112] and is useful to

address class imbalance (e.g., between toxic vs. non-toxic examples).

Algorithm 1 Conditional MTL Loss (ytrue, ypred)

1: Input: True Label ytrue = y ▷ true label w.r.t. current branch
2: Input: Predicted Label ypred = ŷ ▷ Predicted probability of classifier
3: Input: Class Weights wtoxic, wnon-toxic ▷ Assigned weights of classes

Select demographic relevant examples in current mini batch
4: yktrue, y

k
pred = {}, {} ▷ Empty lists to hold selected examples

5: for i ∈ n do ▷ Loop over examples in current mini batch
6: if y ∈ k then ▷ current example is relevant to branch k
7: yktrue = yktrue ∪ y ▷ Append current label for consideration
8: ykpred = ykpred ∪ ŷ

Compute weighted BCE loss over relevant selected subset of examples
9: err = wBCE(yktrue, y

k
pred, wtoxic, wnon-toxic)

10: Output: Error for backpropagation err

For a given MTL architecture, we can consider K+1 tasks: a generic one and

28



K group-specific ones. We would therefore have three tasks: Toverall: given a post, is

it toxic?; TGroup-A: given a post, is it toxic towards Group A? and TGroup-A: given

a post, is it toxic towards Group B? All the examples in the dataset D are passed

through the network, where the Toverall branch learns a demographic-independent

toxic vs. non-toxic representation over N examples. While all N examples and their

labels get passed to the demographic-specific branches (TGroup-A and TGroup-B) as well,

CondMTL only allows backpropagation for relevant instances. For example, only the

N1 examples of D1 that are targeted towards Group-A demographics would be

considered by the TGroup-A branch. Similarly, the TGroup-B branch has access to all N

examples of D, but only calculates error over N2 examples of D2 that are relevant.

The conditional loss is shown in Alg. 1, which operates over each mini batch

of examples to compute errors for backpropagation (steps 5-8 ). It accepts two argu-

ments, the true labels (ytrue = y) and the predicted labels (ypred = ŷ). Note that in

our CondMTL loss, we are using the conditional label format as shown in Table 3.2,

thereby ytrue is the label conditioned on the demographic flag. Iterating over each

example (step 5 ) in the mini batch, we only select relevant instances to that demo-

graphic branch based on the demographic flag (k) (step 6 ) and append the true and

predicted labels to yktrue, y
k
pred, respectively (step 7-8 ). We also have the weights for

each class (wtoxic, wnon-toxic), which are pre-computed during label generation. These

weights can also be computed over each mini batch on the basis of the number of toxic

vs. non-toxic examples in the selected subset yktrue. We leave the choice of selecting

weights up to the practitioner to account for class imbalance. Finally, we compute

the weighted BCE loss on the selected relevant examples for backpropagation (step

9 ). A simple illustration of the working of the loss in shown in Fig. 3.3.

3.3 Results

In this section, we present the dataset used, baseline and evaluation measures

for comparing the models, along with memory and runtime performances.
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(a) Forward pass of CondMTL. All examples are sent to both branches.

(b) Backward pass of CondMTL. Relevant examples are backpropagated in each branch.

Figure 3.3: Forward and Backward passes through the CondMTL framework. All five
posts are sent forwarded to both branches. During backpropagation for CondMTL
loss, examples relevant to Group A are used to loss calculation and alter weights of
Task A layers. Similarly, examples relevant to Group B are used to loss calculation
and alter weights of Task B layers. All five examples influence the shared layer
weights, as the linear summation of the two branch losses.

3.3.0.1 Dataset Used

To assess differential subgroup validity in toxic language detection, we focus on

toxicity and gender [124, 147]. We use the Civil Comments [13] portion of Wilds [74].

The dataset has 48,588 training posts labeled as Toxic or non-Toxic. Each post has

an explicit annotation for the demographics i.e., gender groups of the target entity,

with probability scores about the annotator consensus. We select posts where more

than 50% of annotators agreed on the gender of the target. We include only women

(W) and men (M) genders, to construct a simplified binary sensitive attribute for our

experiments. However, we emphasize that this is a simplification and acknowledge

the non-binary nature of gender. Moreover, we note that the reliance on annotators
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to identify the gender of the target may contain errors.

Train Split Test Split

Branch Toxic Non-Toxic Total Toxic Non-Toxic Total

All 7,099 (14%) 41,489 (86%) 48,588 3,350 (15%) 19,236 (85%) 22,586
Men (M) 3,940 (15%) 22,499 (85%) 26,439 1,920 (15%) 10,694 (85%) 12,614
Women (W) 4,560 (14%) 28,723 (86%) 33,283 2,068 (14%) 12,964 (86%) 15,032

Table 3.3: Statistics of the Wilds [74] dataset. We consider the binary sensitive target
gender as men vs. women. The all branch contains all data points, while men and women
branches contain the data points in which posts target men or women groups, respectively.

We consider posts where either group (women: 22,149 and men: 15,305) or

both groups (both: 11,134) are targeted. Table 3.3 shows the distribution of targets

and labels in the dataset. We use the same procedure for both the train and test splits

from the dataset. We observe roughly a 15%-85% split between toxic vs. non-toxic

labels across all three branches for both the train and test splits.

3.3.0.2 Compared Baselines

For a single task (STL) baseline, we use a DistilBERT [128] representation

layer to extract numerical features from posts. This is followed by layers of dense

neuron connections with relu activation and added biases, ending in a classification

node with sigmoid activation with 0.5 classification threshold (Fig. 3.4). For our

experiments, we freeze the weights of the DistilBERT [128] representation layer. The

only trainable parameters in the models are the dense neuron units that follow the

DistilBERT layer until the output branch. One can replace the DistilBERT layer with

any other advanced feature representation without altering the rest of the model.

Figure 3.4: Architecture for Single Task, where all posts are passed though a neural network
and get classified as toxic vs. non-toxic.

Stacked STL model (Fig. 3.5) contains independent classifiers for each demograph-

ics, distinguishing toxic vs. non-toxic. For the Wilds dataset, we construct All, Men,
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and Women classifiers resulting in 3× the trainable parameters of one Single task

classifier.

Figure 3.5: Architecture for stacked STL contains three independent single task models,
one for each portion of the data.

Traditional Multi Task (TradMTL) model (Fig. 3.6) contains a shared layer

of 512 dense neurons across all the tasks, while the individual task-specific layers

(enclosed in dashed boxes) have dense connections of 128, 64 and 1 each, following

the architecture of the STL model. The shared layer is responsible for learning a

representation that is common across all tasks, while the task specific layers learn

representations specific to their own tasks for differentiating between toxic vs. non-

toxic posts.

Figure 3.6: Architecture for TradMTL and CondMTL, where the 512 dense neurons are
shared across all three tasks while maintaining independent task specific layers (mark by
dashed boxes).

Cross Stitch Multi Task (CSMTL) model (Fig. 3.7) is similar to the stacked

STL model (Fig. 3.5) with Cross Stitch (CS) units [99] placed between each dense
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layer. The CS layer is a K × K weight matrix, initialized as Identity IK . The

intuition is that if the K tasks are independent, then the identity holds even after

training with backpropagation. If the tasks are correlated, then the CS matrix at each

layer would deviate from identity and learn some common correlation structure across

similar tasks. However, both theoretically and empirically, the CS structure does not

always improve performance, while taking up more than K× trainable parameters.

We choose this framework for comparison, as it is one of the most widely used ones

in the MTL literature.

Figure 3.7: Architecture for CSMTL, which is replica of the Stacked STL model, with cross
stitch (CS) units between each dense layers, allowing them to share weights across tasks for
task similarity.

3.3.0.3 Performance Measures

RQ (2b). Can this proposed framework account for lower group-specific harm
compared to other single-task and multi-task baselines, w.r.t. evaluation mea-
sures for a stakeholder?

We show the performance comparison of the models on the Wilds-Civil Com-

ments [74] test dataset. The Accuracy numbers in Table 3.4 indicate that all of the

models roughly perform the same in terms of overall accuracy w.r.t. the Stacked STL

(∼ 86%). Since the dataset is imbalanced, with the non-toxic class encompassing 85%

of the labels, a model which trivially predicts all testing posts as non-toxic would also

achieve a roughly 85% accuracy score. Given that all models perform approximately

the same as this trivial baseline, we need to consider other metrics to more holistically

evaluate model performance.
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Loss type All Men Women

Stacked Single Task 86.3 ± 0.1 85.6 ± 0.2 87.0 ± 0.1

Cross Stitch Multi Task [99] 86.3 ± 0.0 85.8 ± 0.1 86.6 ± 0.0
Traditional Multi Task 86.2 ± 0.2 85.5 ± 0.2 86.7 ± 0.1

Conditional Multi Task (Ours) 86.2 ± 0.2 85.7 ± 0.1 86.7 ± 0.1

Table 3.4: Mean and Standard Deviation measures of models across five runs. All the
models perform the same w.r.t. Overall Accuracy.

In order to identify the discrepancies between the models, we compare the

Recall, F1 and Precision scores in Table 3.5. Since the dataset is imbalanced with

roughly a 85%-15% split between the non-toxic vs. toxic labels, we observe the bias

of the classifier towards detection of non-toxic examples in spite of class re-weighting

during model training. For the non-toxic (NT) class, all of the post hoc measures

are roughly equivalent for the all branch (96% for Recall, 92% for F1, and 88% for

Precision) across the compared models. Similar behavior is observed over the men

and women branches.

We observe in Table 3.5 that CondMTL achieves better recall values w.r.t.

baselines over the smaller i.e., toxic class. CondMTL produces recall values of

(29%, 31%) for the men and women branches respectively, showing marked improve-

ment over CSMTL and TradMTL, which produce recall values of (13%, 5%) and

(4%, 3%), and also outperforming Stacked STL (24%, 24%). The superior perfor-

mance of CondMTL in terms of recall, likely driven by its more accurate under-

standing of toxicity at a group-specific level, is crucial in the context of automated

toxicity detection, where we would like to ensure that toxic posts are not mislabeled

as non-toxic (misses), as such errors could disproportionately affect marginalized de-

mographic groups. For instance, women are disproportionately affected by stalking

and by sexualized forms of abuse [147].

In terms of precision, CSMTL performs the best (67%, 69%) compared to

TradMTL (48%, 47%) and CondMTL (56%, 54%). CSMTL’s higher precision number
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All Men Women
NT T NT T NT T

Recall

Stacked STL 96.9 25.2 96.8 23.8 97.1 23.6
CSMTL 97.2 23.6 98.8 13.3 99.7 4.6
TradMTL 94.4 20.1 95.8 4.2 95.6 2.8
CondMTL (Ours) 96.1 29.0 95.9 28.7 95.1 31.2

F1

Stacked STL 92.3 35.3 92.0 33.5 92.8 33.3
CSMTL 92.3 33.8 92.2 22.2 92.8 8.7
TradMTL 92.1 29.8 91.9 7.9 92.6 5.4
CondMTL (Ours) 92.2 38.3 92.9 37.9 93.6 39.5

Precision

Stacked STL 88.2 58.6 87.6 56.9 88.9 56.4
CSMTL 88.0 59.3 86.4 67.0 86.8 69.1
TradMTL 87.5 54.4 85.3 47.7 86.6 46.7
CondMTL (Ours) 88.6 56.1 88.2 55.9 89.7 53.7

Table 3.5: Statistic Comparison between different methods based on internal stats: Recall,
F1 and Precision. Numbers are bolded only when they are significantly better than the
other models. For a toxic language detection task, Recall is of prime importance over
the smaller toxic class, since we want to detect as many of the toxic posts as possible in
deployment. We observe that CondMTL achieves significantly better recall values for both
groups on the toxic labels.

suggests that it is more reserved when predicting a test example to be toxic, which

results in less false alarms (i.e., a non-toxic post that is erroneously flagged).

F1 provides a joint view of both precision and recall. In terms of F1, we ob-

serve that CondMTL (38%, 40%) provides the best results, outperforming CSMTL

(22%, 9%), TradMTL (8%, 5%) and Stacked STL (34%, 33%). This is because CondMTL’s

recall values are a scale apart compared to the other models.

Although our CondMTL model is not optimized over any strict differentiable

measure of fairness, we post hoc observe that it has a low false negative error rate

balance i.e., improved equal opportunity [59]. Mathematically, a classifier with equal

false negative rate (FNR) will also have equal true positive rate (TPR) or recall.
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We have shown that CondMTL achieves much better recall values compared to other

MTL variants. Table 3.6 shows the post-hoc measured Equal Opportunity (EO) gap

across both groups for the models. All models except for CSMTL (9.0) produce low

EO gaps. Although having a lower EO gap value is ideal, it is necessary to evaluate

the EO gap values of the different models with the context of their recall values.

Thus, while TradMTL has the lowest EO gap value (1.4) among the MTL variants,

given its poor recall values this model is unlikely to be desirable in practice, whereas

CondMTL produces a low EO gap of 2.5 while maintaining higher recall values.

Model Recall (Men) Recall (Women) EO Gap

Stacked STL 23.8 23.6 0.2
CSMTL 13.6 4.6 9.0
TradMTL 4.2 2.8 1.4
CondMTL (Ours) 28.7 31.2 2.5

Table 3.6: Recall per group and Equal Opportunity (EO) gap measured as the absolute
difference between recall values over the groups. For recall, higher values are better. For
EO, lower values are better.

Comparing the confusion matrices of the three branches of the MTL models in

Fig. 3.8 reveals that CondMTL performs better in the demographic group branches

(men and women) for the smaller toxic class. All models perform fairly well when

classifying the nontoxic examples i.e., the cyan sections. Non-toxic posts that are

erroneously flagged as toxic (i.e., false alarms) are shown in the blue sections. On the

other hand, TradMTL and CSMTL both struggle to correctly identify toxic examples

and instead classify a greater portion of the toxic test examples as nontoxic (i.e.,

misses). These misses correspond to the orange sections of the confusion matrices.

Comparing the red sections of the model confusion matrices reveals that CondMTL

correctly classifies a greater proportion of the smaller toxic class. Given that non-

toxic language is more common, CondMTL’s ability to capture a greater proportion

of the toxic posts would be valuable in a deployed toxicity detection model.
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3.3.1 Architecture and Runtime

RQ (2c). Can the proposed pipeline design address memory efficiency and
model runtime concerns w.r.t. SoA baselines?

Table 3.7 shows trainable parameters for the baseline models and for CondMTL.

Model type # Params ∆ Time(s) ∆

Stacked STL (3 models) 1,403,139 - 7,200 -

CSMTL [99] 1,403,166 +0% 2,600 -64%
TradMTL 615,683 -56% 2,200 -69%
CondMTL (Ours) 615,683 -56% 2,050 -72%

Table 3.7: Space (parameter size) and training time (seconds for 10 epochs) required by
STL vs. MTL models on the Wilds dataset. The DistilBERT representation is frozen and
the dense layers are trainable, with each STL model having 467,713 trainable parameters.
For the 3 tasks considered, we assume 3 different STL models and report space and time
summed over all 3. We then report % space and time reduction achieved by MTL models
vs. this baseline of 3 STL models.

The single task model (Fig. 3.4) has 467,713 trainable parameters, hence the

stacked STL (Fig. 3.5) operating on the All, Men, and Women portions of the data

has 3× or 1, 403, 139 trainable parameters. We report space reduction achieved by

MTL models vs. this reference of 3 STL models. The TradMTL and CondMTL

models (Fig. 3.6) have the same architecture but different labeling schema and loss

functions. They have a shared 512 unit layer representation and three task specific

branches which collectively have 56% fewer trainable parameters when compared to

the stacked STL model. The CSMTL model (Fig. 3.7) is a replica of the Stacked

Single Task model with cross stitch (CS) units between each of the dense layers.

It has 27 (∼ +0%) more trainable parameters when compared to the Stacked STL

model due to the extra connections from the CS units. In terms of training and

further deployment, the traditional and conditional MTL models are preferable due

to significantly reduced model size even when dealing with multiple tasks (three in

this case). One can observe that the trainable parameters in Cross Stitch networks
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scale linearly w.r.t. number of tasks, causing memory stagnation. This issue has been

raised and studied in [138].

We report the training runtime in Table 3.7 w.r.t. 10 epochs. Both TradMTL

and CondMTL models have the same number of trainable parameters. However the

CondMTL model only trains over a subset of the data in its men and women branches,

which reduces runtime. Empirically, we observe a reduction of 72% in CondMTL vs.

69% in TradMTL. The stacked STL and CSMTL models take longer to train, since

they roughly have the same number of trainable parameters. However, the CSMTL

model operates on the three branches in a single model rather than three independent

models, resulting in a lower GPU pipeline load and a 64% reduction in time.

3.3.2 Analysis of Conditional MTL

We make two remarks based on the theoretical working and empirical analysis

of the CondMTL and CSMTL networks. Furthermore, we verify our stated proposi-

tions for CondMTL and CSMTL through simple and verifiable benchmarking cases.

Remark. Our proposed Conditional MTL does not allow contamination of weights

across shared task layers and learns only over the group specific distribution for each

demographic branch.

The CondMTL architecture (Fig. 3.6) is an exact copy of TradMTL with the

distinction of the updated loss function and labeling schema. Since the task specific

layers (indicated by dashed boxes) do not interact with each other, each loss function

is strictly guided by the examples that are relevant to its own branch. Assuming that

the data distribution w.r.t. two groups D1 and D2 are independent of each other, each

branch learns a representation of their own dataset and does not take into account

group irrelevant examples. The CondMTL loss (Alg. 1) computes the loss over each
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group-specific distribution (Eq. 3.1), thereby avoiding label contamination.

errall = wBCE([ytrue]D, [ypred]D)

errmen = wBCE([ytrue]D1 , [ypred]D1)

errwomen = wBCE([ytrue]D2 , [ypred]D2) (3.1)

Remark. Cross Stitch MTL [99] allows contamination of weights across shared task

layers.

The CS unit (Fig. 3.7) is initialized with an identity structure, where the num-

ber of tasks dictates the size of the matrix. For illustration, let us consider two tasks

for CS ∈ I2. We find the following two flaws w.r.t. the logic of CS units: a) if the two

tasks are truly independent, then the CS unit should not deviate from identity; and

b) even when two tasks are correlated, allowing deviation from identity, the CS unit

should still be a symmetric matrix since two tasks talking to each other are symmet-

rically equivalent. However, such constraints are not present in the implementation

of the CS units, which causes them to learn arbitrary weights during model training.

The weights become cross-contaminated across tasks.

To verify illustration 2, we also show the final weights of the CS units in our

Wilds dataset training. One can observe that the symmetric property of CS units

is violated. Note that due to the same same but different nature of group-targeted

toxicity, they share some commonality i.e., they are not fully independent of each

other, which would cause the CS matrix to deviate from identity. However, since

tasks talking amongst each other should be symmetrical in nature, we would expect

the updated CS matrix to hold the symmetric property. The values reported in Eq.

3.2 are w.r.t. Fig. 3.7 where we have three CS matrices. These three CS matrices

show clear deviation from symmetry in the off-diagonal elements.
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CS1 =




1.00 −3.69e− 3 −1.46e− 4
1.53e− 3 1.00 2.53e− 3
−4.28e− 3 −1.04e− 3 1.01




CS2 =




1.00 2.49e− 2 −2.29e− 2
1.05e− 2 1.01 2.99e− 3
−1.03e− 2 4.74e− 3 1.01




CS3 =




1.00 1.29e− 2 5.13e− 2
3.53e− 2 1.01 2.19e− 2
7.74e− 5 9.51e− 3 1.01


 (3.2)

3.4 Discussion and Future Work

Effect of Label Contamination. As a result of the misleading labeling

schema discussed in Section 3.1, the TradMTL and CSMTL models learn to mostly

label examples as non-toxic (NT). When considering an example post I hate men, we

know that this post is both toxic and directed at men only; however, had this example

post been in the training set, it would have erroneously taught the women branch of

the baseline MTL models that the post was non-toxic. Similarly, an example post I

hate women, which is toxic and targeted at women only, would have contaminated

the weights of the men branch of the baseline MTL models by skewing it to make

more non-toxic predictions. While this weight-skewing effect of label contamination

may result in higher accuracy scores for TradMTL and CSMTL because the majority

of the Wilds dataset is nontoxic (85% of the dataset is non-toxic), these models will

subsequently acquire a poor understanding of toxicity. Conversely, CondMTL ensures

that the demographic group branches learn a more accurate understanding of toxicity

and correctly labels more toxic posts as toxic, as illustrated by higher group-specific

recall values on the toxic posts in the testing dataset.

Measures of algorithmic fairness and their usage. Frequently, models

that seek to improve algorithmic fairness do so by directly considering a fairness

measure as part of the loss function, which is often done in the form of a penalty term.

In our optimization objective, we do not incorporate any algorithmic fairness measure.

We use a variant of weighted Binary Cross Entropy (wBCE) for optimizing the MTL
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model branches which correlates to giving higher priority in detecting examples from

the smaller toxic class. Rather than modifying the loss function as a result of our

fairness concerns, we modify the network architecture and labeling schema in a way

that enables us to better capture heterogeneity across groups. This approach is

suitable for settings in which improving recall for the minority group is a primary

fairness consideration. However, if the primary concern is the difference across groups,

the proposed approach may not always yield improvements, because even if recall

improves for both groups, the improvement could be greater for the majority class.

In such a scenario, we would like to optimize the network w.r.t. a fairness measure,

and thus we need to use a differentiable version of that said fairness measure. There

exist works in the literature [133] that can optimize a network for a fairness measure.

Correspondingly, networks can also be optimized for equal accuracy across groups

[57] or equalized odds [120]. The choice of the measure depends on the practitioner’s

need and the availability of a differentiable version of said measure.

When considering intersectional fairness, e.g., the intersectionality of gender

and race, or a more fine-grained grouping of demographics, the dimensions of groups

increase. In these cases, the performance of decoupled approaches drops due to data

sparsity. We anticipate that the benefits of the shared layer in CondMTL would be

even more salient in this setting.

Other stakeholders in toxicity detection. When considering toxicity de-

tection, there are multiple stakeholders who are involved. We have primarily focused

on the subject of the post, but other stakeholders include the author of the post and

the annotator. Previous work has shown risks of algorithmic bias affecting authors

of posts; for instance [129] shows that models may exhibit disporportionately high

false positive rates for posts written in African American English. The importance of

considering the demographics of annotators involved in labeling data has also been

recently emphasized [126]. Using the proposed CondMTL to model the problem in

relation to other stakeholders’ demographics is a natural extension of this work.
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(d) Conditional MTL.

Figure 3.8: Confusion matrices of 3 tasks (columns) for different models (rows). Val-
ues are shown as percentages in each block w.r.t. the number of instances relevant to
that branch. CondMTL performs significantly better in the demographic specific men and
women branches, due to training over group relevant examples only.
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Chapter 4: Stakeholder-Aware Joint MTL Model

This chapter builds on the stakeholder and architectural modeling as described

inChapter 3. While CondMTL only takes into account the target-group of posts, the

proposed framework SAJ-MTL (Stakeholder-Aware Joint MTL) framework, in this

chapter, builds upon the foundations laid out in the CondMTL chapter by expanding

its capabilities to account for multiple interacting stakeholder groups - specifically

annotators and target groups - in toxicity detection tasks. By incorporating a joint

consideration of annotator and target perspectives, SAJ-MTL ensures that the model

can better capture subtle distinctions in annotator’s perceptions of toxicity. This

extension allows for improved fairness and predictive performance across all groups,

addressing the limitations of CondMTL’s single-stakeholder focus, and making SAJ-

MTL a more comprehensive solution for stakeholder-aware toxicity detection.

TLDR: Work contributions in this chapter are summarized as follows:

1. We propose an extended CondMTL framework — Stakeholder-Aware Joint
(SAJ)-MTL — to jointly model the interaction of stakeholder identities,
i.e., target group and annotator group demographics.

2. We account for diagreements between annotators in our model training
protocols via two variants: Joint-Inter (only inter-group disagreements) and
Joint-Intra (both inter-group and intra-group disagreements).

3. We develop a scalable version of the joint model to be memory efficient as
the number of stakeholder groups increases, without loss in performance.

4. Results show improved predictive performance of the SAJ-MTL model w.r.t.
two SoA baselines, while being runtime and memory efficient.

As previously discussed in Chapter 3, toxicity detection models can some-

times struggle to distinguish between genuinely harmful content and content that

uses certain words or phrases in a non-harmful way [74], depending on the target

demographics. By considering the target group, the toxicity models [56, 86] can de-
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velop a more nuanced understanding of how cultural variations in language are used

[39], which helps protect these groups from hate speech and discrimination. This ap-

proach promotes equal participation and representation for all demographic groups.

The issue of toxicity perception is further compounded when accounting for the de-

mographic information of the community viewing it [50].

Supervised machine learning models need ground truth labels. Computer vi-

sion tasks like object identification, localization etc. have attained success due the

simplicity of the task w.r.t. human visual acuity, and the objective nature of the

entity to be recognized. However, the same argument cannot be made for toxicity

detection models, wherein the nature of the language itself is complex and the labels

are often subjective in nature. The background of the annotators [1, 6, 125] has an

important impact on the labels. Furthermore, the diverse pool of annotators might

mean more diverse labels for a single post by capturing a broader variety of toxicity

perception. Annotators may exhibit observable differences in their labeling patterns

when grouped by their self-reported demographic identities, such as race, gender, etc.

These patterns are termed as annotator identity sensitivities, referring to an annota-

tor’s increased likelihood of assigning a particular label on a data sample, conditional

on a self-reported identity group [126] or one inferred from platform metadata [30].

This interaction between the target and annotator demographics to infer the final

toxicity label for a post forms the basis for our joint MTL framework.

4.1 Stakeholder-Aware Joint (SAJ) MTL

In this section, we explain the need for our Stakeholder-Aware Joint (SAJ)

MTL model, describe the data setup, and outline the framework. We also show the

workflow of how this model captures the toxicity of a post as a joint interaction

between the annotator and the target demographics.
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4.1.1 Motivation

The Jury Learning work [50] by Gordon et al. provides a critical motivation

to jointly model both the target(s) and the annotator(s) demographics of a post in

toxic language detection. They argue that annotator subjectivity plays a significant

role in toxicity detection, where biases, personal backgrounds, and interpretations

of content vary across annotators. It highlights the need to move beyond treating

annotator labels as objective truths, instead leveraging the diversity of annotators’

perspectives by modeling them explicitly. This insight is particularly relevant in

the context of toxicity detection, where judgments about harmful language are often

influenced by both who the content is directed at (target demographic) and who is

evaluating it (annotator demographic). By integrating both annotator and target

identities, their recommendation model can better capture the inherent subjectivity

in toxicity labels and reduce bias in detecting toxic language, which is crucial for

improving fairness and accuracy across diverse demographic groups. There have been

other studies [10, 26, 68, 127, 148] showing the same effect on data collection around

toxicity with varied set of annotators. Building on this concept, our work expands

the Jury Learning paradigm by using a MTL framework that explicitly incorporates

both annotator and target demographic information, addressing the limitations of

models that focus solely on target identities.

4.1.2 Problem Statement and Data Setup

RQ (3a). How can we update the architectural pipeline of CondMTL to learn
a joint model tailored for specific stakeholder (annotator - target) interactions?

In the current CondMTL framework (Chapter 3), we only considered one

stakeholder at a time, i.e., the target. Therefore, the label associated with each post

is group conditioned on that stakeholder, i.e., y = Pr(d|H), where the stakeholder
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H is the Target (Htarg) or possibly the Annotator (Hanno).

yHtarg = Pr(d|Htarg) Target driven (4.1)

yHtarg = Pr(d|Hanno) Annotator driven (4.2)

In our updated content moderation setting, the toxicity of a post is associated

not only with the target of the post, but also with the interaction between the target

identity and the annotator viewing it.

yHtarg = Pr(d|Hanno,Htarg) Joint Annotator and Target driven (4.3)

Regarding setting up the data and labels for the stakeholder-aware joint frame-

work, we update our labeling schema as per Eq. 4.3. Consider a post d, and two

groups Black and Latinx for both annotator and target groups. The schema is then

having a annotator-target guide conditional label tuple as [Agroup, Tgroup, Labelcond].

For example, if the post only targets the Black group and is labeled by two annotators

each from both groups, then our schema looks as follows:

d→[[ABlack, TBlack, T oxic], [ABlack, TBlack, T oxic],

[ALatinx, TBlack, non− Toxic], [ALatinx, TBlack, non− Toxic]] (4.4)

The interpretation of the schema states that the single post d was labeled by

four annotators. Both the Black annotators marked the post d as being towards the

Black group, whereas both the Latinx annotators marked the post d as being towards

the Black group. Thus, the label of each post instance is jointly conditioned on the

target and annotator demographics, capturing a better view of perceived toxicity.

4.1.3 Framework for Target-Community Interaction

A solution to our joint model is to extend our CondMTL framework (Chapter

3) to take combinations of stakeholder groups and spawn branches for each of them

as shown in Fig. 4.1. For example, given two annotator (a = 2) groups A1, A2 and
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three target (t = 3) groups T1, T2, T3, we split out a × t = 2 × 3 = 6 branches

corresponding to all permutes of (Ai, T j). Being an extension of CondMTL, along

with the updated stakeholder-guided labeling schema, we ensure the following: a) we

avoid any label contamination issues; b) SAJ-MTL would perform better in terms of

model evaluation compared to other Single Task and MTL variants; and c) all the

correctness checks of CondMTL translates directly to SAJ-MTL.

Figure 4.1: SAJ-MTL Architecture Pipeline. Each task specific layer corresponds
to a specific combination of annotator target group tuple (Ai, Tj) to treat different
demographic interactions independent. While the shared layer still learns general
patterns of toxicity that is naturally prevalent, the task specific layers picks up on
content that is more finely targeted and demographically contextual.

This SAJ-MTL framework is an end-to-end joint model trained on a single

dataset. The proposed model is easy to visualize and conceptually understand, being

an extension of the CondMTL framework, where each task-specific branch is a com-

bination of an annotator and target group. Also being an extension of CondMTL,

this framework can deal with sparse labeling scenarios of posts. The computational

complexity of this model is O(at), as the number of branches increase multiplicatively

w.r.t. stakeholder group cardinality, a→ #annotator groups, t→ #target groups.
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4.2 Accounting for varied Annotator perspectives

From recent works [50, 68, 127, 148], it is well established that annotators

often disagree, particularly on subjective tasks, with notable variability both across

and within demographic groups. In this section, we discuss the training and evalu-

ation protocols designed to incorporate inter(across)-Group and intra(within)-Group

disagreements of annotators into our SAJ-MTL framework. These protocols ensure

that our framework accounts for the diverse perspectives and disagreements that arise

during the annotation process, leading to a more robust and equitable model.

RQ (3b). Can we improve model performance and fairness by taking into
account annotator disagreements both at the inter-group and intra-group level
to better reflect the perception of toxicity?

4.2.1 Joint-Inter Model

Inter-Group Disagreements refer to the variations in how different demographic

groups perceive and label toxic content. In the context of toxicity labeling, annotators

from different demographic backgrounds - such as race, gender, age, or cultural con-

text — often interpret and judge content through diverse lenses, leading to significant

disparities in labeling decisions. For example, certain phrases or expressions may be

considered offensive or harmful to one group while being deemed benign or neutral to

another. These differences arise due to varying lived experiences, societal norms, and

historical contexts that shape each group’s sensitivity to specific types of toxic lan-

guage content. In toxicity detection models, failing to account for these inter-group

differences can result in biased outcomes, where the model may disproportionately

penalize or overlook content that is offensive to certain demographic groups.

Our SAJ-MTL model by its architecture (Fig. 4.1) accounts for Inter-Group

disagreements of annotator opinions. The presence of task-specific layers correspond-

ing to specific annotator-target tuple (Ai, Tj) allows this flexibility. In reference to Eq.

4.4, the model redirects the first two instances of the post d to the (ABlack :: TBlack)
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branch as [ABlack,TBlack,Labelcond]. Similarly, the last two instances of d are passed

to the (ALatinx :: TBlack) branch. Once the posts are redirected accordingly, we can

take a majority voted label for multiple instances of post d in a specific branch to

model how a specific annotator group as a whole perceives toxicity directed towards

a specific target group. This protocol allows building models that provide fair and

balanced assessments of toxicity, ensuring that no group is unfairly impacted by the

model’s predictions, by the opinion of the dominant group(s).

4.2.2 Joint-Intra Model

Intra-Group Disagreements refer to the divergences in labeling decisions that

occur within a single demographic group when annotators assess toxic content. Even

among individuals who share similar backgrounds, subjective interpretations of lan-

guage can vary marginally. This is particularly evident in toxicity labeling, where

personal experiences, individual tolerance levels, and differing social perspectives lead

to inconsistent judgments. For example, within a single demographic group, some an-

notators may perceive a certain comment as offensive, while others may view it as

acceptable or non-toxic. These internal disagreements highlight the complexity of la-

beling subjective content, and failing to account for these intra-group disagreements

can introduce ambiguity and reduce the reliability of model predictions.

Given the premise in Eq. 4.4 of routing examples to resolve Inter-Group dis-

agreements of annotator opinions, we provide an additional step in our model training

protocol to handle intra-group disagreements as well. With the two examples of post

d, which were routed to the (ABlack :: TBlack) branch as [ABlack,TBlack,Labelcond],

we keep the two instances separate instead of majority voting their labels. This allows

the SAJ-MTL to distinguish on the fact that even when the same post d is being used

to train a branch, its label might not always be the same, rather represents variying

personal toxicity perception within (intra) an annotator group. Same holds for the

other two instances of d in the (ALatinx :: TBlack) branch, where they are treated as

independent instances as well, with their respective labels.
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4.3 Scalable Extension of the Joint Stakeholder Model

RQ (3c). How can existing multi-task learning architectures be extended to
remain scalable and computationally efficient as the number of task branches
(demographic group-pair) increases?

From a computational perspective, the naive SAJ-MTL framework design

would cause combinatorial explosion when the number of stakeholder groups increase

due to the multiplicative complexity of O(at). All other MTL baselines also suffer

from the same scaling issue leading to memory overload in GPU when training the

models, an issue widely discussed in the Vision community for MTL [46, 60, 138].

Therefore, we also update the architecture to have linear scaling, i.e., O(a+ t), while

at the same time designing numerical correctness checks to validate the workings of

this updated scalable framework to achieve predictive performance equal to that of the

naive model. This ensures that we gain scaling at no cost to predictive performance.

Figure 4.2: Scalable architectural pipeline of SAJ-MTL. Each task specific layer cor-
responds to a specific stakeholder demographic group. The shared layer still learns
general patterns of toxicity that is naturally prevalent. The interaction of the task
specific layers in the magenta box picks up on content that is more finely targeted
and demographically contextual for (Ai, Tj) pairs.

The multiplicative nature of the naive framework arises from making every

possible pairs of target and annotator groups and branching off a task-specific layer

for each one. In the updated scalable model, as shown in Fig. 4.2, we reduce this
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complexity to an additive nature to account for model scaling when multiple groups

across different stakeholder identities are involved. We have a global shared layer

(leftmost) for learning general patterns of toxic language. This layer splits into sepa-

rate shared layers accounting for each stakeholder identity (annotators and targets),

following which we have group-specific layers for each stakeholder group. Therefore,

for our previous example having two annotator (a = 2) groups A1, A2 and three

target (t = 3) groups T1, T2, T3, we split out at least a + t = 2 + 3 = 5 branches

corresponding to every stakeholder groups, plus intermediate ones. This modification

results in linear additive complexity of O(a+ t).

We have an additional concatenation gate (magenta) layer of the annotator

and target groups, followed by the final softmax layer to provide the overall toxicity

score of the post corresponding to all target-annotator pairs (Ai, Tj) that are available

for a post. The gates interact depending on the label of each post d as [annotator-

group, target-group, conditional-Label], where a label is only allowed to condition-

ally backpropagate and train the model, i.e., update it’s task specific representation

weights, if and only if it matches the specific annotator-group::target-group flags.

We achieve equal predictive performance w.r.t. naive baseline, while resolv-

ing the scaling through architectural improvement. We perform numerical correct-

ness checks to achieve scaling without any performance trade-off. This Scalable

SAJ-MTL model is still a MTL framework, having shared and group-specific layers,

though it looks different from a traditional MTL due to the design choices we made

to incorporate stakeholder cardinality efficiency. One can extract specific annotator-

target pair scores from the model, preserving the multi-headed output logic of MTL.

4.4 Results

In this section, we present the dataset and baseline models for evaluating the

predictive performance of SAJ-MTL, along with scalability tests.
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4.4.1 Dataset

For experimentation, we use the Hugging Face dataset [37], originally open-

sourced in [70] as the MHS corpus that is derived from the DLab dataset [126]. For

each post, we have information of the inferred target-demographics, along with self

reported demographics of each annotator. The label for each post is binary (Toxic vs.

non-Toxic) as perceived by the specific annotator marking that post. Although the

dataset has seven demographic groups as target, we sub-sample only four demographic

groups - Asian, Black, Latinx and White, and ignore three others (Middle-Eastern,

Native-American and Pacific-Islander). We do this pre-processing, since the number

of samples with relevant annotator-target pairs (Ai, Tj) for the three excluded groups

were too small to make any feasible train-test split and draw any meaningful conclu-

sions. Thus, both our targets and annotators belong to mentioned four sample rich

groups. Refer to Table 4.1 for sample size. As there are posts marked by multiple

annotators, we pre-process the dataset to ensure that train-test (80% - 20%) split

contains distinct posts. Within each split, a post might be annotated multiple times.

Target Annotator Groups
Groups Asian Black Latinx White

Asian 621 721 551 5501
Black 1560 2292 1654 18545
Latinx 638 961 700 6657
White 711 1086 706 7825

Table 4.1: HuggingFace Dlab dataset statistics showing the number of posts that
match a specific annotator-target pair (Ai, Tj) over four demographic groups.

4.4.2 Text Augmentation based Approach - SoA Baseline

Following Jury Learning [50], the work by Flesig et al. [38] is the first work we

are aware of to jointly model the interaction between the target and the annotator

groups through a text-augmentation-based approach. Their model relies on additional

pieces of information beyond just the post and demographic information itself i.e.,
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annotator IDs and survey responses. This information is used to update the post itself

with additional markers via CLS tokens and a standard loss to learn the conditional

labels. The classification layers are pre-trained and ported over from other datasets

which can lead to label contamination and wrong distributional inference. For our

purposes, we train all parts of the model on one training data and no additional

annotator IDs and survey responses as part of text augmentation for the input post.

The other baseline we choose is the Target-only CondMTL (Chapter 3) frame-

work, where we focus on toxicity label directed at a target group by combining labels

across all demographics of the annotator.

4.4.3 Performance

RQ (3d). Can a model better capture this joint annotator-target interaction
via group-conditioned losses rather than focusing on text-augmentation based
approaches?

Table 4.2 present summary statistics of Micro and Macro average performance

metric across different models, for F1, Precision and Recall, where higher scores

indicate better performance. Our proposed SAJ-MTL Joint-Intra variant emerges as

the top-performing model, largely due to its ability to capture both inter-group and

intra-group disagreements among annotators. By taking into account the varying

opinions within demographic groups, this variant is able to model subtle distinctions

in how toxicity is perceived, resulting in more accurate predictions. This highlights

the sensitivity of model learning to intra-group diversity in judgments. In contrast,

the Joint-Inter variant, which employs majority voting within groups, underperforms

slightly. While it effectively captures inter-group disagreements across demographics,

it struggles with finer distinctions within groups because majority voting tends to

suppress differing perspectives. This often leads to a loss of critical nuances that

can significantly impact toxicity labeling, particularly in edge cases where certain

expressions may be contentious within a group.
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Metric Level Joint-Intra Joint-Inter Flesig [38] Target-Only (CondMTL)

F1
Micro 0.6390 0.6115 0.5240 0.5000
Macro 0.6529 0.6432 0.5470 0.4879

Precision
Micro 0.7063 0.6686 0.6345 0.6041
Macro 0.7487 0.7349 0.6624 0.5896

Recall
Micro 0.5858 0.5661 0.4494 0.4299
Macro 0.5858 0.5793 0.4718 0.4235

Table 4.2: Summary Statistics scores over models. Higher is better. Our SAJ-MTL
Joint-Intra variant is the best performing model due to its consideration of intra-
and inter-group disagreements between annotators. Due to majority voting inside a
group, Joint-Inter fails to learn some subtle distinctions within the group, hence a
slightly lower performance. Flesig’s performance shows that text-based augmentation
approaches for learning group-conditioned toxicity labels might need to rely on several
auxilalry data for better detection. Finally, as expected, the Target-only CondMTL
framework has the least performance since it tends to learn the majority voted opinion
across all groups for a specific target group.

The performance of Flesig’s [38] model, which employs text-based augmenta-

tion for learning group-conditioned toxicity labels, suggests that while augmentation

can help, it may require additional auxiliary data sources to achieve optimal detec-

tion, as used in their work. However, given current data collection practices around

toxicity tasks, such auxiliary info is rarely present in most publicy available datasets.

Without sufficient complementary data, the model struggles to generalize well across

diverse groups, which limits its ability to capture the full complexity of group-specific

toxic language patterns. Lastly, as anticipated, the Target-only CondMTL [56] frame-

work exhibits the lowest performance. This model focuses on learning the majority

opinion across all groups for a specific target group, but this approach overlooks both

intra- and inter-group disagreements. As a result, it tends to align with the dominant

perspective, failing to accommodate the diversity of opinions that exist across and

within demographic groups.

Fig. 4.3 showing the F1 scores for the Toxic class reveal that our proposed

Joint-Intra and Joint-Inter models perform comparably to each other and significantly
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Figure 4.3: F1 scores for the Toxic class. The Joint-Intra and Joint-Inter models per-
form similarly and outperform the Flesig and Target-Only models by better capturing
annotator and target demographics. Notably, Joint-Intra outperforms Joint-Inter for
White-targeted posts, with empirical results indicating its effectiveness in handling
intra-group disagreements among White annotators.

outperform both the Flesig and Target-Only models across all four groups. By jointly

considering both annotator and target demographics through group-conditioned losses,

our SAJ-MTL models effectively capture how annotators perceive toxicity based on

target groups. Since the Black-group in the statistical majority in the dataset, we

observe the best F1 scores for that group across the models.

When comparing our models, Joint-Intra and Joint-Inter across different de-

mographic groups, we observe similar performance for the Asian, Black, and Latinx

groups. This empirical observation is due to the lack of disagreements between an-

notators within (intra) each group. The Asian and Latinx groups have zero disagree-

ments, while the Black group has one disagreement. However, for the White group,

the Joint-Intra model outperforms Joint-Inter. This difference arises from the dis-
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agreements among White annotators on posts targeting the White demographic (31

of 1198 test cases). The Joint-Intra model better handles these internal disagreements

by explicitly modeling intra-group variability, leading to more accurate predictions.

4.4.4 Scalability Tests

Model type # Params ∆ Time(s) ∆

Target Only (CondMTL) 763,653 - 2200 -

Flesig 67,075,795 +8684% 4800 +118%
Naive SAJ-MTL (4 branches) 763,653 +0% 2400 +9%
Naive SAJ-MTL (16 branches) 2,354,612 +208% 3300 +50%

Scalable SAJ-MTL (Ours) 626,133 -18% 2850 +30%

Table 4.3: Memory (trainable parameters) and training time (10 epochs) comparison be-
tween models. We treat the Target-Only model as baseline for comparison, since it does
not account for annotator views. While the model size of Target-Only and Naive SAJ-MTL
are the same, SAJ-MTL takes longer time to train due to varaition in data. The scalable
SAJ variant is the best performing model in terms of model training time.

We report the memory (number of trainable parameters) and runtime (model

training for 10 epochs) efficiency to analyze the Scalable SAJ-MTL variant vs. the

various models in Table 4.3. We treat the Target-Only CondMTL model as the

baseline here since it does not jointly model the annotator-target interactions. The

Flesig [38] model requires the largest parameter and runtime amongst all the models.

Being a text-augmentation based model, the DistilBERT layers were made trainable

to learn updated feature representation from the augmented post. This unfrozen

DistilBERT layer causes the massive increase in the parameter space. We trained the

naive models in two versions. The SAJ-MTL (4 branches) corresponds to modeling

the annotator-target pairs whose demographics match. Since our processed dataset

has four demographic groups, this leads to four branches in the SAJ-MTL model.

As such this model has the same number of trainable parameters as the Target-

Only CondMTL model, with 9% additional runtime to converge. If we consider the

interaction of all annotator-target pairs as reported in Table 4.1, we get the SAJ-MTL
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(16 branches) model. Due to the presence of 16 task-specific layers in this model, we

get a massive increase in space and runtime, highlighting the multiplicative complexity

of the joint interaction of stakeholders in our SAJ-MTL framework.

Finally, the Scalable SAJ-MTL model only has eight branches corresponding

to its additive architecture in Fig. 4.2. Although having comparable results w.r.t.

naive SAJ-MTL models, this proposed scalable pipeline scales well in terms of both

memory and runtime. We can observe that even with the four demographic groups

(Asian, Black, Latinx and White) and two stakeholder (Annotator and Target) in-

teractions, the scalable variant is −18% faster than the baseline compared to the 16

branches +208%. The runtime increase of +30% in this low cardinality setup ex-

pected since the scalable model has eight branches as compared to just four in the

baseline model. Thus, from a computational viewpoint, as the cardinality of groups

increases in any stakeholder identities, the Scalable model would be able to accom-

modate model training within the same machine, without GPU memory saturation.

4.4.5 Discussion

Modeling Annotator Disagreements. As suggested in Jury Learning [50], there

is substantial disagreement on what the correct label ought to be for toxicity labeling

tasks, indicating that it is impossible to create a classifier that makes every user

happy. The quantity of interest, i.e., the final label is rarely just a question of

how many people disagree, but who disagrees, to highlight the differences in labels

produced when the same post is reviewed by people of different demographics. These

differences are present both at the individual and group levels. By accounting for

the Inter-group differences and Intra-group disagreements, we observe that our Joint-

Intra variant indeed performs the best empirically across the evaluation measures vs.

other models, supporting the hypothesis in Jury Learning.

Is Toxicity Detection Solved? Referring to values in Table 4.2, we can observe

that the best recall obtained is still below 0.6, meaning that we are only able to detec-
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tion 60% of the toxic posts. This emphasizes that more modeling and data collection

needs to be done around this task. As the Hugging Face dataset specifically focused

on collecting posts that targeted the Black group, the model is able to score the best

(0.7 Recall) for that group. For the White group, the performance gap between Joint-

Intra and Joint-Inter also highlights the variability of opinions of perceived toxicity

by White annotators when the post is targeting White group. So, while we are able to

demonstrate that toxicity detection cannot be captured by a one-size-fits-all classifier,

even our own model, with improved performance, still lags behind of what might be

considered an acceptable performance value for a standard ML classification problem.

Thus, there needs more data per group, both quality and quantity wise, for our model

to learn more on the viewpoints of individuals and groups.
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Chapter 5: Pareto Manifold Tracer for MOO

Multi-Objective Optimization (MOO) problems require balancing multiple ob-

jectives, often competing with one another under constraints [35, 145]. This chapter

summarizes the ideas, methodologies and findings across three of my MOO related

works [53, 54, 135] (arxiv, ICITR 21, UAI 22).

TLDR: Work contributions in this chapter are sectioned as follows:

1. We propose a PINN based network, Hybrid Neural Pareto Front (HNPF),
based on Fritz John Conditions, to learn a manifold over weak Pareto points.

2. We provide application-driven scenarios and numerical correctness checks
to distinguish between Pareto Front vs. Dataset Optima.

3. We develop a scalable solver, Scalable HNPF (SUHNPF), that acts as Hy-
pernetwork to trace approximate Pareto manifold over large scale models.

We adopt Pareto definitions from [94]. A general MOO problem can formu-

lated as follows:

optimize F (x) = (f1(x), . . . , fk(x)) (5.1)

s.t. x ∈ S = {x ∈ Rn|G(x) = (g1(x), . . . , gm(x)) ≤ 0}

with n variables (x1, . . . , xn), k objectives (f1, . . . , fk), and m constraints (g1, . . . , gm).

Here, S is the feasible set, i.e., the set of input values x that satisfy the constraints

G(x). For an MOO problem optimizing F (x) subject to G(x), the solution is usually

a manifold as opposed to a single global optimum, therefore, one must find the set

of all points that satisfy the chosen definition for an optimum. A solution point x

is optimal, if it is a stationary point of the function f , i.e., its gradient at x is zero

(∇xf = 0). A Pareto optimal solution [109] defines the set of all saddle points [35]

such that no objective can be further improved without penalizing at least one other

objective.
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Type Method Finds Only Handles Scalable
Pareto points Constraints Neural MOO

Operations
Research (OR)

NBI [24] ✓ ✓ ✗

mCHIM [47] ✓ ✓ ✗

PK [113] ✓ ✓ ✗

HNPF [135] ✓ ✓ ✗

Multi-Task
Learning
(MTL)

MOOMTL [132] ✗ ✗ ✓

PMTL [84]] ✗ ✗ ✓

EPO [91] ✗ ✗ ✓

EPSE [90] ✗ ✗ ✓

PHN [106] ✗ ✗ ✓

Ours SUHNPF ✓ ✓ ✓

Table 5.1: SUHNPF vs. existing Operations Research (OR) and Multi-Task Learning
(MTL) methods. OR methods account for both objectives and constraints, produce Pareto
points only, and are known to find true Pareto points for non-convex MOO problems. How-
ever, these methods do not scale to high-dimensional neural MOO problems. In contrast,
MTL methods scale well but typically do not support constraints and can struggle with
non-convexity.

5.1 Hybrid Neural Pareto Front (HNPF)

HNPF learns a neural Pareto manifold from training data. With HNPF,

Pareto points are acquired from training data via FJC by treating the loss function

like a Physics Informed Neural Network (PINN).

This section is based on the work reported in “A Hybrid 2-stage Neural Opti-
mization for Pareto Front Extraction”, Gupta, Singh, Lease and Dawson.
Arxiv edition: https://arxiv.org/pdf/2101.11684

5.1.1 Fritz Jon Conditions (FJC)

Let the objectives and constraints in Eq. (5.1) be differentiable once at a

decision vector x∗ ∈ S. The Fritz-John [80] necessary conditions for x∗ to be weak

Pareto optimal is that vectors must exists for 0 ≤ λ ∈ Rk, 0 ≤ µ ∈ Rm and (λ, µ) ̸=

(0, 0) (not identically zero) s.t. the following holds:
k∑

i=1

λi∇fi(x∗) +
m∑

j=1

µj∇gj(x∗) = 0 (5.2)

µjgj(x
∗) = 0,∀j = 1, . . . ,m
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Gobbi et al. [48] present an L matrix form of FJC:

L =

[
∇F ∇G
0 G

]
[(n+m)× (k +m)] (5.3)

∇Fn×k = [∇f1, . . . ,∇fk]

∇Gn×m = [∇g1, . . . ,∇gm]

Gm×m = diag(g1, . . . , gm)

comprising the gradients of the functions. The matrix equivalent of FJC for x∗ to be

Pareto optimal is to show the existence of δ = (λ, µ) ∈ Rk+m (i.e., δ not identically

zero) in Eq. (5.2):

L · δ = 0 s.t. L = L(x∗), δ ≥ 0, δ ̸= 0 (5.4)

Therefore the non-trivial solution for Eq. (5.4) is:

det(LTL) = 0 (5.5)

Remark. If fis and gjs are continuous and differentiable once, then the set of weak Pareto
optimal points are x∗ = {x|det(L(x)TL(x)) = 0}, δ ≥ 0 for a non-square matrix L(x), and
is equivalent to x∗ = {x|det(L(x)) = 0}, δ ≥ 0, for a square matrix L(x). See [54] for a
proof of the above for the unconstrained setting only.

5.1.2 Framework

HNPF’s neural network first identifies weak Pareto points via feed-forward

layers to smoothly approximate the weak Pareto optimal solution manifold M(X∗)

as M̃(X̃,Φ). The last layer of the network has two neurons with softmax activation

for binary classification of Pareto vs. non-Pareto points, distinguishing sub-optimal

points from the weak Pareto points. The network loss is representation driven, since

the Fritz John discriminator (Eq. 5.5), described by the objective and constraints,

explicitly classifies each input data point Xi as being weak Pareto or not. After

identifying weak Pareto points, HNPF uses an efficient Pareto filter to find the subset

of non-dominated points.

HNPF’s scalability bottleneck lies in how it samples variable domain points

to test for Pareto optimality in model training. If there are any direct constraints on
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Figure 5.1: Caption

variable values, this naturally restricts the feasible domain for sampling. However,

lacking any prior distribution on where to find Pareto optima, HNPF performs uni-

form random sampling in the variable domain to ensure broad coverage for locating

optima. For small benchmark problems with known variable domains, this suffices.

However, it is infeasible to apply this to find optimal parameters for a neural MOO

model.

5.2 Pareto Front vs. Dataset Optima

Our review of related work in Information Retrieval (IR) suggests several ques-

tions are of great interest. Firstly (1), what is the true Pareto front induced by

specified objective functions? Secondly (2), given a finite dataset, what are the best

solutions that can be achieved on that dataset? Finally (3), how close or far are the

best dataset solutions from the true Pareto front?

This section is based on the work reported in “Pareto Solutions vs Dataset
Optima: Concepts and Methods for Optimizing Competing Objectives with
Constraints in Retrieval”, Gupta, Singh, Das and Lease, ICTIR 21.
Online edition: https://dl.acm.org/doi/abs/10.1145/3471158.3472248

To find the true Pareto front (1), a tremendous body of prior work in opti-

mization [32, 94] is readily available, supporting both convex and non-convex MOO

problems, as well as optimization under constraints. Prior work here also includes
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canonical benchmark problems on which correctness of methods is routinely validated.

Regarding (2), we wish to know the best solutions that can be achieved on a given

dataset. Intuitively, one can simply evaluate objective functions on each data point

and return the maxima achieved for any single objective. To identify the “frontier”

of discrete points achieving optimal trade-off between objectives, classic methods can

be applied to induce the non-dominated dataset hull [97]. Finally (3), how close or far

are the best dataset solutions from the true Pareto front? Given the true Pareto front

found in (1) and the functional domain hull for a given dataset (2), we can measure

the distance from points on the dataset hull to the true Pareto front. Application

specific datasets or models can strive towards minimizing the distance between the

domain hull and the true Pareto front.

We define several IR inspired practical scenarios [45, 53] around relevant and

diverse document retrieval and illustrate the difference between true front vs. data hull

achieved on limited sampling of data. Cases include non-/competing objectives under

both un-constrained and constrained settings, with verifiable numerical correctness

checks with tunable trade-off between relevance vs. diversity.

5.3 Scalable HNPF

To address HNPF’s scalability bottleneck, we introduce SUHNPF, a scalable

variant of HNPF for finding weak Pareto points with an arbitrary density and distri-

bution of initial data points. This is achieved via a scalable unidirectional FJC-guided

double-gradient descent algorithm that encompasses HNPF’s neural manifold estima-

tor. Given continuous differentiable loss functions, SUNHPF’s guided double gradient

descent strategy efficiently searches the variable domain to find Pareto optimal points

in the function domain. This enables SUHNPF to learn an ϵ-bounded approximation

M̃(Θ∗) to the weak Pareto optimal manifold.
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This section is on the work reported in “Learning a neural Pareto manifold
extractor with constraints”, Gupta, Singh, Bollapragada and Lease, UAI 22.
Online edition: https://proceedings.mlr.press/v180/gupta22a/gupta22a.pdf

Constructing a classification manifold of Pareto vs. non-Pareto points requires

a set of feasible points to represent both classes. Since the Pareto manifold is unknown

a priori, feasible points are drawn from a random distribution (lacking an informed

prior) to initialize both classes. We then refine the points in the Pareto class P1

while holding the non-Pareto points P0 constant. We assume an equal-sized sample

set of P points for each class, which helps to address class imbalance for harsh cases.

For benchmark problems where the feasible set over the variable domain is known,

we randomly sample points over this feasible domain to initialize P1 and P0. Given

these input points x, held constant for P0 and used as initial seed values for P1,

Alg. 2 specifies our FJC-guided double-gradient descent algorithm. The algorithm

iteratively updates P1 towards the Pareto manifold via FJC-guided descent. The

training dataset D is the union of P0 ∪ P1. The algorithm iterates over Steps 5-9

until the error (err) converges to the user-specified error tolerance (ϵouter).

err =
∑

p∈P1

(
det(LTL)

)2
(5.6)

Algorithm 2 FJC-guided descent of variable domain

1: Input: Data D = P0 ∪ P1 ▷ Training Data
2: Input: Functions F and Constraints G
3: Input: Error tolerance ϵouter, ϵinner
4: while err > ϵouter do ▷ Run until convergence
5: Train network using D as data for e epochs
6: Compute current error err

7: Compute ∇pdet =
∂det(LTL)

∂p , ∀p ∈ P1
8: P1← P1− η∇det ▷ Update points in P1
9: D = P0 ∪ P1 ▷ Update Training Data

10: Output: Weak Pareto manifold M̃

64

https://proceedings.mlr.press/v180/gupta22a/gupta22a.pdf


Chapter 6: Group Accuracy Parity

Toxic language in social media is often associated with various risks and harms:

cyber bullying, discrimination, mental health problems, and even hate crimes. Given

the massive volume of user generated content online, manual review of all posts by

human moderators simply does not scale. Consequently, natural language processing

(NLP) methods have been developed to fully or partially automate toxicity detection

[130]. Prior work has achieved high Accuracy and F1 scores on TL detection (e.g.,

[158]) across various model architectures: e.g., convolutional (CNN) [44], sequential

(BiLSTM) [52], and transformer (BERT) [29]. However, studies have also found that

model accuracy can vary greatly across sensitive demographic attributes, such as

race or gender [25, 110, 129]. For example, a BERT-based classifier obtains 90.4% vs.

84.5% accuracy for White vs. African American author groups on Davidson’s dataset

[27] when just optimized for overall accuracy, independent of author groups.

This chapter is based on the work: “Learning Optimal Accuracy vs. Fairness
Tradeoffs for Hate Speech Detection”, Gupta, Kovatchev, Das and Lease.
Arxiv edition: https://arxiv.org/pdf/2204.07661 (Unpublished)

TLDR: Work contributions in this chapter are sectioned as follows:

1. We propose a differentiable variant of the Accuracy Parity (AP) [160] fair-
ness measure — Group Accuracy Parity (GAP) — to optimize for equal
accuracy over binary groups, with strict mapping between GAP and AP.

2. We use a MOO hypernetwork — SUHNPF [55] — to study Pareto trade-off
for overall accuracy vs. GAP (group fairness), across three neural models.

3. We empirically show better performance using GAP vs. two other differen-
tiable measures, w.r.t. author and target groups across two datasets.
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6.1 Group Accuracy Parity (GAP)

While recent years have seen a rapid progress in fairness research, it is often

measured in a post-hoc manner and optimization is often indirect (e.g., by improving

the training data via pre or post-processing) [129]. A particular challenge is that

most existing measures are non-differentiable and thus cannot be optimized directly

via gradient descent. While one can optimize differentiable, surrogate loss functions

instead, this risks metric divergence between the optimization criteria used in training

vs. the actual metrics of interest [98, 101, 140, 157]. While a standard Cross Entropy

based loss will maximize performance for the overall/majority groups, we also need

to provide protections to minority groups as well, from a fairness perspective. There-

fore, our intended measure should be able to optimize for comparable performance

across all groups involved. As Friedler et al. [43] and others have noted, different

worldviews lead to conflicting definitions of fairness that are mutually incompatible.

Since one cannot have it all, specific fairness measures must be selected (that are suit-

able to the given task, context, and stakeholders at hand). In this work, we adopt a

popular fairness objective of optimizing a model to provide balanced accuracy across

demographic groups [9, 25, 61, 100] i.e., Accuracy Parity (AP) [160].

6.1.1 Related Work

Toxicity Detection and Fairness. Detection of toxic language in its various forms

[40] has attracted significant attention due to its prevalence in online social media

platforms. To date, many datasets have been created to support model training

and evaluation [27, 41, 74, 115, 117, 146, 150, 151]. While NLP/ML methods tend

to optimize for overall performance, recent studies highlight the racial bias induced

in such classification tasks, when group identifiers are not considered during model

training [28, 129, 155]. Here, fairness concerns with respect to multiple stakeholders

arise, including the author of the post [129] and groups targeted by a post. We focus

our attention on fairness with respect to demographic groups targeted in the content.
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To address the problem of bias in toxic language detection, a variety of work

has sought to improve the training and testing data [51, 62, 77, 110, 122, 126, 129],

with the expectation that fairer data will lead to fairer models. Sap et al. [129]

propose to resolve the problem using race and dialect priming during annotation.

Park et al. [110] propose a data-focused fairness approach for the closely related

problem of gender bias. They create contrastive examples by using gender swap data

augmentation. Röttger et al. [122] framed a set of functional tests and argued that

automated toxicity detection models should be evaluated on all functionalities.

Fairness Measures. Measures based on confusion matrices (e.g., accuracy, preci-

sion, recall, and F1) help measuring performance of machine learning systems. How-

ever, several studies unveil ML systems can be discriminatory based on different sen-

sitive attributes (race, gender etc.). The amplification of systemic unfairness through

AI applications has been pronounced across different critical application areas such as

hiring, finance, legal applications, and content moderation [3]. To address this, several

methods have been introduced to quantitatively measure and mitigate unfairness in

machine learning systems borrowing from legal literature on anti-discrimination [36].

Friedler et al. [43] show that these different worldviews can lead to conflicting statis-

tical targets, which makes it impossible to simultaneously achieve conflicting fairness

targets. Because fairness measures can be at odds with each other based on the un-

derlying assumptions and statistical choices [104], selecting an appropriate fairness

metrics often depends on the task, use case, and stakeholder priorities [7, 42, 66].

Differentiable Fairness Losses. Typically, toxicity detection systems are trained

with a single objective of minimizing cross-entropy [41, 110, 122], which is differen-

tiable. For imposing a fairness constraint in the optimization, a standard approach

is to add a differentiable regularization term with a hyper-parameter λ, as shown in

Eq. 6.1. While decreasing cross-entropy leads to decreasing Overall Error (OE), ef-

fectively increasing Overall Accuracy (OA), we typically need a fairness loss function
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whose decrease leads to increase in a corresponding fairness evaluation measure.

min Cross-Entropy loss (f1) + λ · Fairness loss (f2) (6.1)

While many fairness evaluation measures exists, our survey of existing fairness-

related loss functions, that strictly optimizes for an equivalent measure during model

training, finds only few variants. For e.g., the CLA [133] loss has one-on-one cor-

respondence for optimizing False Negative Rates across groups. Other adversarial

losses like ADV [155] tries to optimize for False Positive Rates, but suffers from met-

ric divergence. Ranking literature suffers from lack of equivalent optimizers owing to

the discontinuous nature of rank order, hence they focus on designing surrogates with

close asymptotic bounds [107, 140].

Same Usage, Very Many Monikers. In this work we focus on optimizing for

Accuracy Parity (AP) [160], which refers to equal performance of a model across

different demographic groups, ensuring that accuracy remains consistent irrespective

of group membership. This is a popular fairness measure and has been proposed in

literature, yet with very many different names. The ones we found include Accuracy

Equity [31], Equality of Accuracy [61], Equal Accuracy [100], Overall Accuracy Equality

[9] and Accuracy Difference [25]. However, note that all these work have used AP as an

evaluation measure in their classification protocol to evaluate degrees of un-fairness.

RQ (4a). Can we design a differentiable fairness measure corresponding to
Accuracy Parity, which accounts for balanced accuracy across groups?

6.1.2 Accuracy Difference

While AP is an equality condition, we still need to quantify the deviation from

equality in cases of unequal performance across groups. We therefore use Accuracy

difference (AD) Das et al. [25], a continuous version of AP to measure this deviation.

AD is shown in (Eq. 6.2), where ŷ, y, g are the predicted label, true label, and group
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attribute respectively. Thus AD is defined based on the confusion matrix. Since

the formulation is probabilistic in nature, i.e., ratio of numbers over the dataset,

and not distribution over variable, AD becomes non-differentiable. That is, AD can

only be used in a post-hoc manner and cannot be directly used for gradient-based

back propagation. Furthermore, Eq. 6.2 inherently assumes that the majority group

accuracy (g = 1) will always be higher than the vulnerable group (g = 0), which

might not always hold true, resulting in potential negative values of AD in the range

[-1,1]. Naturally, as a post-hoc measure, AD is disconnected from the optimization

objective of the model used during training.

AD = P [ŷ = y|g = 1]︸ ︷︷ ︸
Acc Group 1 (g=1)

−P [ŷ = y|g = 0]︸ ︷︷ ︸
Acc Group 0 (g=0)

(6.2)

These limitations motivated us to define a differentiable, non-probabilistic form

of AD we refer to as group accuracy parity (GAP), which allows any descent-based

model during training to optimize close to equal accuracy across sensitive attribute

classes, and addresses the range issue of AD.

6.1.3 GAP Formulation

Cross-Entropy (CE) loss is commonly used as a loss function in classification

tasks and is designed to measure the difference between probability distribution (ŷ)

predicted by the model and the true distribution (y) of the data. CE is a general

differentiable loss that can be used to optimize over the entire data or independently

across groups (g). Although not a strict one-to-one correspondence, it is generally

observed that minimizing CE leads to minimizing Overall Error (OE), thereby maxi-

mizing Overall Accuracy (OA), due to CE providing non-asymptotic guarantees and

placing an upper bound on the estimation error of the actual loss [93].

CE(y, ŷ) =
∑

c∈class

y(c) log(ŷ(c)) (6.3)
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For balanced classification across groups, e.g., demographic information of

post subject, we formulate our GAP loss function as follows: we first calculate the

CE across each group, then minimize the difference across them and finally frame it

as a Single Objective Optimization problem corresponding to Eq. 6.1. The GAP loss

function in Eq. 6.4 is equal to overall cross entropy loss (OE = CE(y, ŷ)) in Eq.

6.3 only when both CE errors are equal across the groups.

GAP = OE + λ∥ CE(g = 1)︸ ︷︷ ︸
err Group 1 (g=1)

− CE(g = 0)︸ ︷︷ ︸
err Group 0 (g=0)

∥22 (6.4)

Remark. GAP optimizes for AP, to reduce the accuracy gap across groups, therefore

minimizing this type of disparate impact across groups. Additionally, GAP formu-

lation is flexible with different weighted variants of accuracy w.r.t. chosen entropy,

depending on the evaluation need.

The formulation of the GAP loss in Eq. 6.4 is generalizable to different

weighted variants of accuracy. For e.g., Binary Cross Entropy (BCE) in Eq. 6.5

is used as a loss function for optimizing a binary classifier i.e., labels of 0s and 1s.

BCE, however, does not take into account the label imbalance.

BCE = − 1

N

∑

N

y log(ŷ) + (1− y) log(1− ŷ) (6.5)

Weighted Binary Cross Entropy (wBCE) re-weights the error for the class

labels proportional to their inverse frequency in the data. The class re-weighting

strategy w(·) in Eq. 6.6 is available in packages like SkLearn [112] and discussed in

detail by Lin et al. [83]. Since most real-world datasets often have label imbalance,

wBCE aims to penalize both labels (1s and 0s) equally. Thus, minimizing wBCE

leads to maximizing balanced accuracy (BA), a better measure than accuracy, in

presence of label imbalance.

wBCE = − 1

N

∑

N

w(y) · y log(ŷ) + w(1− y) · (1− y) log(1− ŷ) (6.6)
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Remark. In this implementation we choose the weighted Binary Cross Entropy

(wBCE) variant in the GAP terms to account for binary label imbalance within

each group. Consequently, we use Balanced Accuracy (BA) to evaluate performance

of each group, to maintain functional mapping.

We summarize key properties of GAP:

1. GAP maps to AD. GAP has a strict mapping to AD i.e., minimizing GAP

also minimizes AD.

2. GAP is differentiable. GAP is defined as the summation of overall error

and the squared 2-norm difference between the wBCE across the groups. Since

wBCE is differentiable, so is the 2-norm difference. Hence GAP can be opti-

mized for any descent based model.

3. GAP is smooth. GAP has a 2-norm formulation, thus the range of attainable

evaluation values are within [0, 1], avoiding the negativity issue in AD. Being a

squared 2-norm measure, the surface of GAP is smoother than other comparable

measures like CLA [133], which uses 1-norm. A smoother surface leads to better

descent rates [15].

6.2 Optimizing Competing Objectives - Pareto Trade-off

Typically, TL detection systems are trained with the single objective of max-

imizing OA [41, 110, 122] or a custom defined objective [155]. In contrast, we frame

TL detection as a Multi-Objective Optimization (MOO) problem. It is important to

highlight the distinction between an M(Multi)OO vs. S(Single)OO formulation and

their interpretation. Consider the two objectives as f1: Cross-Entropy and f2: Fair-

ness. Traditional fair classifiers operate by adding a penalty term corresponding to
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Fairness to the main objective Entropy with a hyper-parameter λ in Eq. 6.7.

min f1 + λf2

min Cross-Entropy loss + λFairness loss (6.7)

The reader is requested to note that such optimization process does not have

any control over the range of λ, and it can vary between (0,∞). During the optimiza-

tion process, we tune λ till we get a desired performance in SOO setting. Furthermore,

there is no explicit requirement of the scale of f1 and f2 to be the same. Thus, there

is no simple correlation between the amount of Fairness we want vs. the value of λ.

An unconstrained MOO problem with two competing loss objectives is defined

in Eq. 6.8. Note that this is a joint min-min problem instead of a single min problem.

The objectives here need to be at the same scale. If a linear trade-off is expected

between them, the linear scalarized form of the MOO problem with trade-off α ∈ [0, 1],

minimizes both objectives simultaneously inEq. 6.9. Solving this reformulated MOO

problem would achieve balance between Entropy and Fairness, with α holding strict

mathematical interpretation of linear trade-off. Decreasing Entropy causes Fairness

to increase, while decreasing Fairness causes Entropy to increase.

minmin f1 , f2 (6.8)

min αf1 + (1− α)f2

min αCross-Entropy loss + (1− α) Fairness loss (6.9)

Note that there are multiple mathematically optimal solutions to Eq. 6.9.

Every optimal solution corresponding to each value of α in Eq. 6.9 is a member of the

Pareto optimal solution set i.e., the Pareto front contains the set of optimal model

parameters given the dataset and the model. To solve this MOO problem, we adopt

the SUHNPF Pareto framework [55] as a HyperNetwork [58] to learn optimal TL

detection neural model parameters over trade-offs. Hypernetworks train one neural

model to generate effective weights for a second, target model.
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SUHNPF efficiently learns the entire Pareto manifold of feasible trade-off val-

ues during training. This empowers users to then choose any solution point they

prefer on the manifold, a posteriori, and extract the classifier weights configuration

as per their desired trade-off α, without retraining the model for that α. Training the

same model for K different α’s, with R being the time for a single run, would result

in total runtime of K×R i.e., linear on the number of runs. Using the Hypernetwork

to learn the manifold is computationally much more efficient i.e., taking a constant

time c×R, 1 < c≪ K over feasible α’s, rather than for each value of α.

RQ (4b). How we use existing MOO frameworks to approximately and effi-
ciently trace out the trade-off space of competing measures?

6.3 Experimental Results

6.3.1 Datasets

We consider two datasets: Davidson et al. [27] for author demographics and

the Civil Comments [13] portion of Wilds [74] for target demographics (Table 6.1).

In each case, we frame the task as a binary classification problem (Toxic vs. non-

Toxic, or “safe”) with binary group attributes (Majority vs. Minority groups). Note

that “Majority” and “Miniroty” in our work simply refers to the representation of

the group in the data and does not carry any social or cultural meaning.

Dataset Group Toxic Safe Total

Davidson
Minority 8,725 302 9,027 (36%)
Majority 11,895 3,861 15,756 (64%)

Wilds
Minority 5,973 33,762 39,735 (44%)
Majority 6,832 42,950 49,782 (56%)

Table 6.1: Statistics of the two datasets used in this work. For Davidson et al. [27],
we consider the author demographics AAE vs. SAE as group attribute for minority
vs. majority group attributes. For Wilds [74], we consider the binary group target
gender as male vs. female for minority vs. majority group atttributes.

Author Demographics Dataset We consider fair moderation of posts writ-
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ten by authors from different demographic groups in [27]. Prior studies [4, 129] have

empirically demonstrated the existence of bias towards author demographics in TL

classification. The sensitive attribute in this dataset is race, as identified by the di-

alect of the tweets. Following prior work, we apply Blodgett et al. [12]’s model to

automatically-detect dialect labels for each of the tweet as African-American English

(AAE) or Standard American English (SAE), representing Minority and Majority

groups, respectively. We acknowledge both that dialect is only a weak surrogate rep-

resentation of demographic race, and that automatic detection of dialect will naturally

incur noise. However, in this we follow established practices from prior work. Our

fairness methods are agnostic as to the sensitive attribute labeled in the data, and

our results are only intended to attest to the capabilities of our proposed methods,

rather than provide findings regarding protection of any specific vulnerable popu-

lation. Davidson et al. [27]’s data includes 24,783 Twitter posts labeled as Hate,

Offensive, or Normal. Following prior work [110], we set the class label to 1 (Toxic)

if the post contains hate speech or offensive language, and 0 otherwise. We note that

tweets from Minority authors are annotated as toxic in 96% of the cases, compared to

75% for the tweets by Majority authors. While these statistics suggest an important

risk of annotation bias in this dataset, dataset debiasing lies beyond the scope of our

work. Our focus in this work is restricted to balancing accuracy across the groups,

given the dataset as it is annotated.

Target Identity Dataset To assess fair protection of different groups tar-

geted in posts, we use the Civil Comments [13] portion of Wilds [74]. This dataset has

448,000 training tweets labeled as Toxic or non-Toxic. Each tweet has explicit anno-

tation for the demographics, gender, or religion of the target entity. We select tweets

where more than 50% of annotators agreed on the gender of the target. In this work,

we include only female (majority) and male (minority) genders in order construct

a binary sensitive attribute for our experiments. In doing so, we fully acknowledge

both the non-binary nature of gender and individual freedom of self-identification.

Our method is agnostic as to the sensitive attribute in the data, and our inclusion
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of only two genders merely reflects a convenient way to assess the capabilities of our

proposed method in regard to balancing accuracy across a binary groups.

6.3.2 Neural Models Considered

To assess the generality of GAP, we evaluate across three distinct neural ar-

chitectures: CNN [44], BiLSTM [52] and BERT [29]. For all three models, we freeze

the feature representation layers and optimize the weights of the classification layer.

In general, GAP loss optimization and the SUHNPF hypernetwork [55] support such

generalization across any models that can be trained via gradient descent.

6.3.3 Baseline Loss Functions

We compare against two baseline loss functions. The first baseline [133] seeks

to balance False Negative Rate (FNR) across protected groups [21], also known as

equality of opportunity [59]. To do so, they propose a differentiable measure referred

to as “CLAss-wise equal opportunity” (CLA). CLA by the nature of its formulation

has a strict correspondence to its intended fairness evaluation.

CLA =
∑

y∈C

∑

g∈G

|BCE(y, g)−BCE(y)| (6.10)

The second baseline [155] is an adversarial approach to demoting unfairness,

which we denote as ADV. It seeks to provide false positive rate (FPR) balance [21],

otherwise known as predictive equality (ibid.). Being adversarial, this method and

others [20] do not have any correspondence with any evaluation measure. Thus, users

should be cautious of possible metric divergence while using such techniques.

ADV = βBCE + (1− β)(adversary(y, g)− 0.5) (6.11)

6.3.4 Experimental Setup

We have two experimental setup with Weighted Cross Entropy (WCE) as f1

and Fairness criteria as f2. First, we optimize the fairness measure directly as a
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SOO problem following Eq. 6.7 under a penalization setting, as used in CLA [133].

Secondly, we use the MOO setting to find the trade-off between WCE and fairness

measure following Eq. 6.9, with the SOO vs. MOO distinction shown in Sec 6.2.

6.3.5 Evaluation Measures

Our focus in this work is the tension between minimizing accuracy difference

(AD) [25] and maximizing overall accuracy (OA). We thus evaluate on four post-hoc

measures: OA over the dataset (majority and minority groups together), accuracy of

each group separately, and AD observed between groups.

6.3.6 Existing Bias in CNN, BiLSTM, BERT

Table 6.2 presents results for three different TL classifiers optimized to maxi-

mize OA (i.e.,WCE) on Davidson et al. [27]’s dataset. TheMajority class consistently

shows 6-7% higher accuracy than the Minority class, across models and five random

initialization. Such imbalance serves as motivation for our work to optimize OA/AD

across demographic groups. This inequaility behavior in TL detection is consistent

across all three neural models and both datasets. Due to space restrictions, in the

rest of the paper we present only the results for the BERT-based classifier. However,

our findings also apply to BiLSTM and CNN networks.

Models Overall % Majority % Minority % AD %

CNN 87.52 ± 0.3 89.12 ± 0.2 82.88 ± 0.3 6.24 ± 0.2
BiLSTM 87.60 ± 0.2 89.37 ± 0.2 82.46 ± 0.1 6.91 ± 0.3
BERT 88.84 ± 0.2 90.35 ± 0.2 84.47 ± 0.1 5.88 ± 0.1

Table 6.2: Baseline accuracy results on Davidson et al. [27]’s dataset when maximizing
overall accuracy only. Results show consistent bias of higher accuracy for the Majority.

Table 6.3 shows the baseline results on the Wilds [74] dataset. The perfor-

mance of the classifiers are similar w.r.t. Table 6.2, where due to focus on Overall

Accuracy (OA), there is a gap between the group specific accuracies. This shows the

existing bias across the three neural models, with the BERT based model performing
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relatively better than the rest.

Models Overall % Majority % Minority % AD %

CNN 83.90 ± 0.2 86.11 ± 0.1 81.27 ± 0.2 4.84 ± 0.2
BiLSTM 83.94 ± 0.1 85.98 ± 0.2 81.52 ± 0.2 4.46 ± 0.1
BERT 84.71 ± 0.3 86.53 ± 0.1 82.49 ± 0.2 4.04 ± 0.2

Table 6.3: Baseline accuracy results on Wilds [74] dataset when maximizing overall
accuracy (OA) only. Results show consistent bias of higher accuracy for the Majority.

6.3.7 Single Objective Optimization (SOO)

Table 6.4 shows the results for the SOO experimental setup. The baseline

BERT model optimized via Cross Entropy obtains 88.84 OA and 5.88 AD on David-

son et al. [27] and 84.68 OA and 3.88 AD on Wilds [74]. All three loss functions

successfully reduce the AD on both datasets. As expected, the improvement in fair-

ness comes at the cost of lower OA. We evaluate the different optimization metrics

by looking at both the change in AD and in OA.

ADV performs the worst of the three measures, most notably due to its rel-

atively large drop in OA. Optimizing for GAP and CLA gives the same OA, where

the two losses show no significant difference across 5 initialization. However, in terms

of reducing AD, our GAP measure outperforms CLA by 0.9 on Davidson and 1.5

on Wilds. Looking at the results, we can conclude that GAP is the best performing

measure in terms of reducing Accuracy Difference. The results are consistent across

both datasets. These results show the value in optimizing a measure that correctly

reflects the desired notion of fairness, as well as the benefit from directly optimizing

the measure of interest, rather than surrogate or approximate loss functions, to avoid

metric divergence.

6.3.8 Multi Objective Optimization (MOO)

In Section 6.3.7 we used GAP, CLA, or ADV to directly optimize fairness.

However, the reduced AD comes at the cost of lower OA. In order to find the optimal
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Measure Overall % Majority % Minority % AD %

Davidson

Baseline 88.84 ± 0.2 90.35 ± 0.2 84.47 ± 0.1 5.88 ± 0.1
GAP (Ours) 87.32 ± 0.1 87.35 ± 0.1 87.26 ± 0.1 0.09 ± 0.0
CLA 87.57 ± 0.2 87.82 ± 0.1 86.87 ± 0.1 0.95 ± 0.0
ADV 86.27 ± 0.4 86.88 ± 0.2 84.52 ± 0.3 2.36 ± 0.1

Wilds

Baseline 84.68 ± 0.3 86.41 ± 0.2 82.49 ± 0.1 3.88 ± 0.2
GAP (Ours) 84.38 ± 0.1 84.51 ± 0.1 84.23 ± 0.0 0.28 ± 0.0
CLA 84.43 ± 0.1 85.23 ± 0.1 83.41 ± 0.0 1.82 ± 0.1
ADV 83.61 ± 0.2 84.17 ± 0.1 82.91 ± 0.1 1.26 ± 0.1

Table 6.4: Optimizing fairness in a SOO setup. We compare a BERT-based model
trained using cross entropy (Baseline) with models trained using different fairness
measures. Our proposed measure (GAP) obtains the best results in reducing AD
while maintaining high overall accuracy.

trade-offs between fairness and accuracy, we use the SUHNPF framework in a MOO

experimental setup. We use a BERT-based classifier and three different pairs of

objective functions: WCE vs. GAP; WCE vs. CLA; and WCE vs. ADV, learning a

linear MOO trade-off between the two competing objectives.

Fig. 6.1 shows the results of the MOO experiments. The SUHNPF allows

us to control how important is each objective (accuracy vs. fairness) by choosing the

value of α. At α = 1, we optimize only for Accuracy, and at α = 0, only for fairness.

We illustrate the different trade-offs at 4 points of the Pareto front (α = 0, 0.25,

0.5, and 0.75). We can observe that with decreasing α, both AD and OA decrease.

For ADV we can see that the drop in AD is comparable to the drop in OA, which

is not an efficient trade-off between accuracy vs. fairness. GAP and CLA maintain

a relatively consistent OA, while GAP reduces AD far more than CLA, yielding the

best trade-off for each α. We can conclude that GAP is consistently the best metric,

across SOO and MOO experimental setups and across different values of α for MOO.

Table 6.5 reports the the Accuracy Difference (AD) and Overall Accuracy
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Figure 6.1: Trade-offs between Accuracy Difference (AD) and Overall Accuracy (OA),
on the BERT based model with SUHNPF acting as hypernetwork for three methods
— GAP (ours), CLA, and ADV – across the two datasets for α ∈ [0, 1], with α = 0
optimizing AD only and α = 1 optimizing OA only. GAP achieves lower AD consis-
tently across α settings and datasets, while a more modest drop in OA is observed
across methods as AD is reduced.

(OA) values achieved for the different trade-off configurations of the Bert model,

across three loss measures. This is a tabulated version of Fig. 1 (main text). Note

that for trade-off α = 1, only OA is maximized, hence none of the losses play any part,

thus a common number across three columns, for each dataset. As the trade-off takes

into account each of the loss measures, we empirically observe GAP to be performing

best w.r.t. the other measures, since it is being optimized w.r.t. minimizing AD.

CLA is designed to optimize for Equal Opportunity i.e., False Negative Rate

across each group of sensitive attribute (g), follows similar trajectory to GAP. As

these measures operate on different sections of the confusion matrix, and optimizing
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α Accuracy Difference Overall Accuracy F1

GAP (Ours) CLA ADV GAP (Ours) CLA ADV GAP (Ours) CLA ADV

Davidson

1.00 5.9 ± 0.1 88.9 ± 0.2 0.71 ± 0.02

0.75 4.2 ± 0.1 5.0 ± 0.1 4.7 ± 0.1 88.5 ± 0.3 88.6 ± 0.2 88.2 ± 0.4 0.70 ± 0.01 0.69 ± 0.01 0.68 ± 0.00
0.50 2.7 ± 0.1 3.7 ± 0.1 3.2 ± 0.1 88.1 ± 0.5 88.3 ± 0.5 87.4 ± 0.6 0.69 ± 0.02 0.67 ± 0.01 0.65 ± 0.01
0.25 1.2 ± 0.1 2.4 ± 0.0 2.7 ± 0.1 87.7 ± 0.2 87.9 ± 0.4 86.8 ± 0.6 0.67 ± 0.01 0.65 ± 0.00 0.64 ± 0.01
0.00 0.1 ± 0.0 0.9 ± 0.0 2.4 ± 0.1 87.3 ± 0.1 87.6 ± 0.2 86.3 ± 0.4 0.66 ± 0.00 0.64 ± 0.02 0.61 ± 0.01

Wilds

1.00 3.9 ± 0.2 84.7 ± 0.3 0.65 ± 0.02

0.75 3.3 ± 0.1 3.6 ± 0.1 3.5 ± 0.1 84.6 ± 0.2 84.6 ± 0.1 84.5 ± 0.3 0.63 ± 0.02 0.62 ± 0.01 0.62 ± 0.02
0.50 2.6 ± 0.1 3.1 ± 0.1 2.9 ± 0.1 84.5 ± 0.4 84.6 ± 0.6 83.9 ± 0.4 0.62 ± 0.0 0.61 ± 0.01 0.60 ± 0.01
0.25 1.5 ± 0.0 2.5 ± 0.0 2.0 ± 0.1 84.5 ± 0.1 84.5 ± 0.2 83.8 ± 0.5 0.60 ± 0.01 0.60 ± 0.01 0.57 ± 0.01
0.00 0.3 ± 0.0 1.8 ± 0.1 1.3 ± 0.1 84.4 ± 0.1 84.4 ± 0.1 83.6 ± 0.2 0.58 ± 0.02 0.58 ± 0.01 0.55 ± 0.02

Table 6.5: Performance of GAP vs. CLA, ADV across two datasets in terms of Ac-
curacy Difference (AD) and Overall Accuracy (OA). GAP achieves lower AD consis-
tently across α settings and datasets, while a more modest drop in OA is observed
across methods. α = 1 minimizes WCE over labels only, hence same error across the
three measures.

for some values in them leads to better numbers in other parts of the table, since the

total number of samples are fixed. ADV, on the other hand, tries to balance False

Positive Rate across each sub-population of sensitive attribute (g). The performance

of ADV however deviates a lot from the trajectory of both GAP and CLA, since their

adversarial setup is not strictly optimizing for FPR, and similar deviations can be

seen in their original work [155] as well.

There are various ways to define fairness and over 80 [7] different post-hoc

measures for fairness, corresponding to different use-cases. We obtained the best

results when using GAP: a measure designed specifically for achieving Overall Accu-

racy Equality (OAE). Other fairness measures such as CLA and ADV can improve

the OAE to a certain degree, but are nowhere near as efficient as GAP. Because

no fairness measure is universal [104], it is important to pick a loss function that

corresponds to the intended fairness goal.
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Chapter 7: Multi-Group GAP for Target Detection

While Chapter 6 reviews the concept of Accuracy Parity (AP) and a develops

it’s corresponding differnetiable loss GAP, we did not highlight practical use case

scenarios where we can justify the importance of such a group-fairness measure. In

this chapter we aim to provide such practical use-case driven justification to emphasize

the need for GAP, specially around fair target-group detection. We also provide

extend GAP to a multi-group setting to accommodate the target-detection task.

This chapter is based on: “Fairly Accurate: Optimizing Accuracy Parity in
Fair Target-Group Detection”, Gupta, Kovatchev, De-Arteaga and Lease.
Arxiv edition: https://arxiv.org/pdf/2407.11933 (Unpublished)

TLDR: Work contributions in this chapter are summarized as follows:

1. We emphasize the need for balanced accuracy across groups for tasks with
symmetric error costs, specifically around target-group detection.

2. We extend the GAP measure to handle multiple (beyond binary) groups.

3. We show an impossibility between Equalized Odds and AP, clarifying the
common misconception that satisfying EO guarantees satisfying AP.

4. We empirically show the effectiveness of GAP for balancing accuracy across
groups, over 7 target demographics, with minimal drop in overall accuracy.

7.1 Need for symmetric errors in Target Detection Task

RQ (5a). From a fairness use-case, how to we ground the importance for such
measure in target-group detection task?

Algorithmic fairness tasks that have received most attention in the past years

are typically associated with allocating goods or burdens (e.g., college admission is a

good, and denying bail is a burden). In such settings, it is easy to identify a “positive”
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and a “negative” class, and errors typically have asymmetric costs. For example,

errors in being mistakenly granted admission (false positive) vs. being mistakenly

denied (false negative) are not equal. However, target detection presents a multi-label

prediction task where labels correspond to demographic groups (e.g., Latinx, Black,

and Native American). As such, there is no notion of “positive” and “negative” label,

and the motivation to provide equal treatment to all groups results in considering

errors as symmetric. As discussed Chapter 1, if a toxic post targets group-Latinx but

is mistakenly detected as targeting group-Black, this would be equally undesirable as

a toxic post targeting group-Black but mistakenly detected as targeting group-Latinx.

Thus, a fair target detection model involves equalizing accuracy across all groups, i.e.,

Accuracy Parity (AP) [160]. Specifically, for any given platform, user demographics

may be highly skewed, and enforcing equal accuracy for every demographic group

may require a trade-off in which accuracy for dominant group(s) is reduced.

7.2 Extension to Beyond Binary Groups

RQ (5b). What are feasible extensions on the proposed measure to account
for multiple demographic groups (beyond binary)?

Referring to Eq. 6.4, one can notice that the current formulation takes into

account only two groups (g = 0, 1) due to the binary nature of the motivating fairness

measures AD [25] or Equality of Accuracy [61]. We extended the current formulation

of Eq. 6.4 to include multiple groups (beyond binary), such that the equivalence the

original fairness notion still holds mathematically, and not heuristic guided. Eq. 7.1

defines the revised formulation. In particular, we sum the Cross Entropy (CE) losses

over all pairs of distinct groups. This updated formulation also reaches zero error

when the error differences across all the groups are minimized, i.e., accuracy levels
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for all demographics groups are optimized to be equal.

GAP = OE + λ
∑

i,j∈[G],i ̸=j

∥ CE(g = i)︸ ︷︷ ︸
err Group i (g=i)

− CE(g = j)︸ ︷︷ ︸
err Group j (g=j)

∥22 (7.1)

The multi-group extension of GAP in Eq. 7.1 has GC2 (G choose 2) terms

in the regularization factor, corresponding to all combinations of distinct group pairs

(i, j) ∈ [G], i ̸= j within the dataset of group cardinality G, while being smooth in

nature due to the squared 2-norm. This formulation allows us to account for practical

scenarios where a post can potentially target multiple group(s) simultaneously.

7.2.1 Code Flow

Alg. 3 presents the logic of the wBCE loss in Eq. 6.6, where the weights

w[g] represent inversely scaled values of labels (0s and 1s), within each group g.

Thus err grp[g] equivalently maps to Balanced Accuracy (BA), an evaluation measure

widely used in datasets with label imbalance [16, 65]. Absence of this weighting term

would strictly map to standard accuracy, following the mapping from BCE. The

overall error err overall is then defined as summation of errors across groups. Note

that we do not weight groups while adding their errors since: a) we want to treat all

groups equally; and b) TensorFlow’s bce function is scale independent, i.e., it produces

same error value for equal ratios of mispredictions w.r.t. total samples, irrespective

of sample size. For e.g., bce value over 5 samples with 1 misprediction is equal to bce

value over 15 samples with 3 misprediction. Alg. 4 shows the logic of our proposed

GAP loss. After computing overall error via Alg. 3, GAP computes the GC2 (G

choose 2) group-pairwise errors. The errors are squared to enforce positive values

and allow for a smooth loss surface. The final SOO error as per Eq. 6.1 is the

summation of the overall error and a regularized sum of group-pair errors.
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Algorithm 3 overall loss(y true, y pred, w[g])
Loss function for optimizing Overall Error

1: Input: y true, y pred ▷ True and Predicted Labels
2: Input: w[g] ▷ Balanced weights of Group g
3: y true lab = y true[: , 0] ▷ Label Info
4: y true dem = y true[: , 1] ▷ Demographic Info
5: for each group grp[g] ∈ G do
6: pos grp[g] = group(y true dem == g) ▷ Find indices
7: y true[g] = y true lab[pos grp[g]] ▷ True group labels
8: y pred[g] = y pred[pos grp[g]] ▷ Predicted group labels
9: err grp[g] = bce(y true[g], y pred[g], w[g]) ▷ wBCE

10: err overall =
∑G err grp[g] ▷ summation of group loss

11: Output: err overall

Algorithm 4 gba loss(y true, y pred, w[g])
Loss function for optimizing Group Balanced Error

0: Repeat Steps 1-10 of Alg. 3
1: for group pairs [i, j] ∈ G, [i ̸= j] do ▷ GC2 (G choose 2) iterations
2: err group pairs =

∑
(err grp[i]− err grp[j])2

3: err balanced = err overall + λ · err group pairs
4: Output: err balanced

7.3 Incompatibility of Equalized Odds and Accuracy Parity

RQ (5c). c) Are Equalized Odds and Accuracy Parity mutually incompatible?

We next present an impossibility theorem between Equalized Odds (EO) and

Accuracy Parity (AP), that, to the best of our knowledge, has not been previously

identified. It challenges the common assumption that satisfying EO inherently ensures

AP. While EO aims to equalize error rates, such as true positive rates (TPR) and

false positive rates (FPR) across different demographic groups, it does not guarantee

balanced accuracy for those groups. EO is concerned with the consistency of error

rates, focusing on reducing disparate treatment across groups in terms of misclassi-

fications. AP, on the other hand, prioritizes balanced detection accuracy across all

groups, ensuring that no group is disproportionately disadvantaged in terms of correct

classifications. Thus, a model can achieve EO while still exhibiting unequal detection
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performance, leaving some groups with significantly lower detection accuracy than

others. To formalize this incompatibility, we present the following theorem:

Theorem 7.1. Consider a fairness problem where the goal is to simultaneously satisfy

Equalized Odds and Accuracy Parity. The only scenarios in which this is feasible are

when the base rates (the proportion of positive labels) are equal across all groups or

when the model engages in random prediction.

This theorem illustrates that EO and AP are fundamentally misaligned in

most practical scenarios. This finding underscores the importance of selecting fairness

metrics that align with the desired outcomes, particularly in tasks involving sensitive

group detection, where accuracy disparities can exacerbate existing biases.

Proof. From basic definitions, we know the following:

True Positive Rate (TPR) =
TP

TP + FN

False Positive Rate (FPR) =
FP

FP + TN

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
=

TP + TN

Total

Assume two groups A and B. Let the number of positive and negative examples in

group A be PA and NA respectively. Similarly, PB and NB for group B respectively.

Base Rate: Proportion of positive to negative examples in a group, i.e., PA

NA
and PB

NB
.

Since we are satisfying Equalized Odds, we have:

TPRA = TPRB = TPR

FPRB = FPRB = FPR

85



For Group A, we have the following:

TPA = TPR ∗ PA

FNA = PA − TPA = PA ∗ (1− TPR)

FPA = FPR ∗NA

TNA = NA − FPA = NA ∗ (1− FPR)

∴ AccA =
TPA + TNA

PA +NA

=
TPR ∗ PA +NA ∗ (1− FPR)

PA +NA

(7.2)

For Group B, we have the following:

TPB = TPR ∗ PB

FNB = PB − TPB = PB ∗ (1− TPR)

FPB = FPR ∗NB

TNB = NB − FPB = NB ∗ (1− FPR)

∴ AccB =
TPB + TNB

PB +NB

=
TPR ∗ PB +NB ∗ (1− FPR)

PB +NB

(7.3)

Hence, we can observe that group accuracies under Equalized Odds setting are

dependent on proportion of positive and negative examples in each group. Therefore,

guaranteeing Equalized Odds does not guarantee Equalized Accuracy.

Special Case 1: Equal Base Rates across groups, i.e., PA

NA
= PB

NB
, PA =

αPB, NA = αNB, ∀α ∈ (0,∞). Under this special setting of equalized base rates, Eq.

7.2 and Eq. 7.3 becomes the same:

AccA =
TPR ∗ PA +NA ∗ (1− FPR)

PA +NA

=
TPR ∗ αPB + αNB ∗ (1− FPR)

αPB + αNB

=
α(TPR ∗ PB +NB ∗ (1− FPR))

α(PB +NB)

= AccB

Special Case 2: Unequal Base Rates across group, but TPR and FPR

sum to one. TPR + FPR = 1. Under this special setting, Eq. 7.2 and Eq. 7.3

becomes the same. This amounts to random prediction by the model.
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AccA =
TPR ∗ PA +NA ∗ (1− FPR)

PA +NA

=
TPR ∗ PA +NA ∗ TPR

PA +NA

=
TPR(PA +NA)

PA +NA

= TPR

AccB =
TPR ∗ PB +NB ∗ (1− FPR)

PB +NB

=
TPR ∗ PB +NB ∗ TPR

PB +NB

=
TPR(PB +NB)

PB +NB

= TPR

In summary, the feasibility of simultaneously achieving Equalized Odds and

Accuracy Parity is highly constrained. In most real-world scenarios, the base rates

are inherently imbalanced across groups, making Special Case 1 difficult to satisfy.

The only alternative is for the model to resort to random predictions (Special Case

2 ), which undermines the utility and reliability of the system. This impossibility

result highlights the need for practitioners to carefully choose and prioritize fairness

criteria based on the context and constraints of their application.

7.4 Results of GAP around Target Group Detection

To assess fair target-group detection we use the HuggingFace DLab dataset [37]

as used in Chapter 4. The dataset has 135, 556 posts, where each post has an explicit

annotation for the target group(s) i.e., demographics of the target entity (target race).

We select posts having the target-demographics flag as True, where a post targets

one or more groups, irrespective of the toxicity label of the post. We have boolean

scores on annotator consensus for seven demographic groups: Asian, Black, Latinx,

Middle-Eastern, Native-American, Pacific-Islander and White. Fig. 7.1 shows the

split of the targeted groups by posts. Fig. 7.2 shows the split of posts by the number

of groups targeted. We do a 80%-20% split for training and testing data respectively.

Similar to Chapter 4, we ensure that posts do not repeat across splits.
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Figure 7.1: Statistics of posts targeting various demographic groups in the DLab
dataset [70]. The Black community is the statistical majority in the dataset, empha-
sizing that they are most highly targeted in posts.
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Figure 7.2: Statistics of posts targeting multiple groups.
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7.4.1 Baselines Compared

We use the same loss functions as before from Section 6.3.3. Note that while

CLA, EO are applicable to multi-group setting, ADV by design is only for two-group

setting. In our implementation, we replace BCE with wBCE in Eqs. 6.10, 6.11 to

make a fair comparison under label imbalance.

7.4.2 Evaluation Measures Considered

Balanced Accuracy (BA) Unlike standard accuracy, which can be misleading

in the presence of label imbalance, BA provides a more reliable model assessment

when dealing with imbalanced datasets. It computes the average accuracy of each

label, thereby offering a balanced perspective to account for the unequal label distri-

bution. By considering both the sensitivity (TPR: true positive rate) and specificity

(TNR: true negative rate) of each label, BA effectively captures the model’s ability

to correctly classify instances across all labels, regardless of their prevalence.

BA = (TPR + TNR)/2.0 (7.4)

Average Balanced Accuracy (Avg. BA). When optimizing accuracy across

groups, we report the average over the group-specific BAs (known as macro-averaging)

as a summary statistics. The Avg. BA (macro) treats each group equally, ensuring

that the classifier’s performance is evaluated in a balanced manner across all demo-

graphic groups.

Avg.BA =
1

G

G∑

g=1

BA(g) (7.5)

Hamming Loss It is a widely employed metric for assessing the performance of

multi-label classifiers. Formally, for a dataset with N instances and G labels, the

Hamming Loss quantifies the fraction of incorrectly predicted labels across all in-

stances in the dataset, with hamming(yi(g), ŷi(g)) as an indicator function of 1, if
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the g-th label for instance i is incorrectly predicted, 0 otherwise. Specifically, it mea-

sures the average fraction of labels that are misclassified in comparison to the true

label set. Hamming and Subset Accuracy Loss are comparable under small label cases

[154], hence we just report HL.

Hamming =
1

NG

N∑

i=1

G∑

g=1

hamming(yi(g), ŷi(g)) (7.6)

Other measures of interest Although we are strictly optimizing for similar BA

across groups, it is imperative to state that the gain in fairness does not come at

a strict trade-off to other measures of interest like Precision, Recall, F1. Given our

multi-label setup, we report the macro variants (average over group-specific numbers)

of the mentioned measures.

Prcmacro =

∑
g∈G Prc(g)

G
(7.7)

Recmacro =

∑
g∈GRec(g)

G
(7.8)

F1macro =
2 · Prcmacro ·Recmacro

Prcmacro +Recmacro

(7.9)

7.4.3 Evaluation and Loss Performance

The values presented in Table 7.1 illustrate the achieved BA values across

various groups during a single run for the test set, for the two baseline losses (OE and

CLA) vs. our GAP. Notably, the Black group, constituting the statistical majority

in the dataset as outlined in Kennedy et al. [70], demonstrates the maximum BA

values for the three losses. We show the maximum difference (Max. Diff. ) between

the groups in Table 7.1, to highlight the performance gap when the optimization

method does not align with the intended evaluation. Specifically, optimizing for

overall error (OE) fails to account for variations in group performance, resulting in

the highest difference values (Max. Diff. of 21.9). In contrast, both the GAP and CLA

approaches incorporate considerations of group performance alongside overall error,
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Balanced Accuracy (BA) (↑)

Loss Asian Black Latinx Middle Eastern Native American Pacific Islander White Max. Diff. (↓) Avg. BA (↑)

OE 80.31 86.91 81.07 84.87 64.99 67.91 75.01 21.9±1.3 77.29±0.29
CLA 82.51 85.34 81.67 84.62 73.91 74.92 80.44 11.4±0.8 80.49±0.14

GAP 83.18 83.86 83.47 83.42 78.95 78.32 82.58 5.5±0.5 81.97±0.13

Table 7.1: Balanced Accuracy (BA) achieved by each loss function (OE and CLA
baselines vs. our GAP) over the 7 demographic groups (on test data) for one run.
For each loss, we also color which group exhibits the maximum and minimum BA
values achieved for that the loss over the 7 groups, with the difference between this
maximum vs.minimum shown in the Max. Diff. column (for BA, we want to minimize
this difference). GAP achieves a lower maximum difference (Max. Diff. = 5.54) than
either baseline loss function, evident from the visualization in Fig. 7.3. GAP also
achieves the highest (macro) average BA across groups (Avg. BA = 81.97). We also
report the standard deviation of Max. Diff and Avg. BA over five runs, with CLA
and GAP having similar deviation.

leading to substantially lower Max. Diff. compared to OE. Notably, given that GAP

optimizes for balanced error rates across groups, it exhibits the smallest difference

(Max. Diff. of 5.5), indicating least disparities across groups.

We report the average BA (macro) score obtained in all three losses in Ta-

ble 7.1, with GAP having the highest value (Avg. BA = 81.97). We hypothesize that

by incorporating the additional group information in the loss while model training,

both the group-informed losses (CLA and GAP) are able to find better local optima

compared to OE. The Best BA is a group performance measure indicating how many

amongst the 7 groups are performing best across the three losses. For this measure,

we observe OE to have the highest group BA values for 2 groups (Black, Middle

Eastern), while GAP performs best for rest of the five groups. This also emphasizes

the fact that GAP does not prioritize the performance of one group over others in its

optimization criteria, thereby being the best performing loss across the groups.

To further highlight performance disparities between demographic groups in

our target-group detection setting, we present Fig. 7.4. This figure displays the

pairwise absolute differences in evaluated Balanced Accuracy (BA) across various

demographic groups (|left - bottom|). Notably, as each group is equivalent to itself,
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Figure 7.3: Visualization of the BA values achieved by each loss function over the 7
demographic groups. The maximum difference (Max. Diff.) between the maximum
and minimum BA achieved for each loss across groups is also shown. See Table 7.1
for additional detail and discussion. GAP performs best with lowest Max Diff. of 5.5.

all diagonal entries are 0.0. Higher values in the heatmap indicate the classifier’s bias

towards one group compared to another. Through the color gradient in the heatmap,

we observe consistent patterns of unequal group performance, particularly evident in

the optimization for overall error rates (OE). This illustrates that solely optimizing

for overall performance may result in disproportionate and inequitable performances

across the internal groups within the dataset.

Apart from the (Black, Native American) pair which has a Max. Diff. of 21.9,

we see other group pairs as well with a wide range of performance disparity, when

group indicators aren’t considered in OE. Two key observations can be drawn from

the figure: a) The Black group being the statistical majority has a dominant perfor-

mance gap over the Native American group being one of the statistical minorities. b)
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Figure 7.4: Heatmap of pairwise absolute difference of BA across groups in test set as
an indicator for bias and disparate impact. OE has the highest performance gap (Max
Diff = 21.9) across groups as indicated by the extremes of color, not only across one
group- pair but consistently across multiple group pairs. GAP has the least spread in
pairwise error values (Max Diff = 5.5), evident from the flatness of color, indicating
least disparate impact across groups.

Even for group pairs with similar statistical population, for e.g., the (Middle Eastern,

White) pair, there can be performance disparities (BA gap of 9.9) because one group

might be simply easier to classify than the other. CLA, which optimizes for FNR,

has improved performance over OE, however, since it’s optimization criteria (min-

imizing false negatives)does not align with out intended evaluation (having similar

performance across groups) its heatmap lies in-between that of OE and GAP.

In contrast, our GAP loss, which is explicitly designed to achieve similar (bal-

anced) performance across groups while optimizing overall performance, shows sub-

stantially fewer extremes in group performance gaps. The heatmap reveals smoother

transitions between groups, indicating a more equitable distribution of the perfor-

mance of the classifier. Moreover, the extreme values of Maximum Difference (Max.

Diff.) presented in Table 7.1 are reflected as outliers in these heatmaps, corresponding

to specific group pairs.

We present the Hamming Loss (Eq. 7.6) values in Table 7.2 as a summary

statistic in our multi-label classification setup. The Hamming loss metric quantifies

the average fraction of misclassified labels, with lower values indicating enhanced clas-
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OE CLA GAP

Hamming Loss % (↓) 7.65 12.10 6.85

Table 7.2: HL values across different losses for test data. Lower values are better.
GAP optimizes for jointly over TPR and TNR, thereby achieving lowest values, in-
dicating better classifier performance.

sifier performance. While the CLA loss prioritizes minimizing FNR, which inherently

involves asymmetry, there may be instances where it disproportionately optimizes for

this aspect at the expense of other performance metrics. Consequently, CLA may

exhibit poorer Hamming performance compared to OE loss. In contrast, the GAP

loss maintains symmetry, resulting in a balanced trade-off while jointly minimizing

TPR and TNR. As a result, GAP consistently achieves the lowest Hamming values,

indicative of superior classifier performance.

Loss Prcmacro (↑) Recmacro (↑) F1macro (↑)

OE 0.7083 0.5808 0.6383
CLA 0.5418 0.7143 0.6162

GAP 0.7854 0.6837 0.7310

Table 7.3: Summary statistics of other evaluation measures. Since CLA strictly opti-
mizes for minimizing FNR, it indeed achieves the highest Recall (1 - FNR). However,
this comes at the cost of losing out on Precision. Since GAP jointly minimizes both
TPR and TNR, it performs best both in terms of Precision and F1 scores across three
losses.

Table 7.3 presents summary statistics of evaluation measures - Precision,

Recall and F1 - in our multi-label classification at the macro level. The CLA ap-

proach, characterized by its emphasis on minimizing the False Negative Rate (FNR),

inherently yields the highest Recall, however, this optimization strategy comes at the

expense of Precision and F1, both being lower than OE. Our GAP loss, by jointly

minimizing True Positive Rate (TPR) and True Negative Rate (TNR), emerges as

the optimal performer in terms of Precision and F1 score across the evaluated losses.
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7.4.4 Runtime Performance

The runtime and model convergence numbers shown in Table 7.4 are over

the training dataset of 36k posts, where we report the average time per epoch, epochs

till convergence, total runtime, and the extra time (∆) for losses compared to OE.

Avg. Time
Per Epoch (s)

Epochs till
Convergence

Runtime
Total (s)

∆ (s)
w.r.t. OE

OE 154 21 3234 0
CLA 158 41 6478 3244

GAP 163 27 4401 1167

Table 7.4: Runtime Analysis. While OE takes the least time, GAP gains more in
optimizing performance across groups for an extra of ∼ 9s per epoch. The smoothness
of GAP loss (27 epoch) also allows faster convergence compared to CLA (41 epoch).

Since OE in Alg. 3 is weighted Binary Cross Entropy (wBCE), it takes the least

amount of time per epoch and also number of epoch to converge. GAP in Alg. 4 takes

all the steps of Alg. 3 for computing the overall loss in addition to calculating GC2

(G choose 2) losses and the balanced loss. Thereby GAP takes additional compute

time for solving its intended optimization. The same argument holds true for CLA

and ADV as well, since all of them are variants of the SOO format in Eq. 6.1.

Although GAP does the GC2 extra computation, hence the extra runtime

(∆ = 1167s), it is not that significant (extra 9s per epoch) compared to OE, while

gaining much more in terms of optimization improvement. While OE and GAP

operate on smooth losses (Eq. 6.6, 6.4) their convergence epoch is relatively fast

(∼21, ∼27). CLA uses a 1-norm loss (Eq. 6.10), hence the empirical loss surface is

not as smooth as the previous two. As such, it is observable that CLA on average

takes more epochs (∼41) to converge with a higher ∆.
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7.4.5 Analysis and Discussions

Differentiable Measures. While important fairness measures have been proposed

in the literature, catering to evaluate different scenarios, many lack an equivalent

differentiable loss, making these measures difficult to optimize. Model training with

approximate loss functions might lead to potential metric divergence [98, 101] between

optimization criteria used in training vs. evaluation measure of interest. “No matter

what measure is chosen for optimization, an inexact metric necessarily leads to a

divergence between the goal and the metric in the tail.” [92]. Continuing formulation

of equivalent differentiable loss functions w.r.t. other important fairness measures

could yield better performance for them.

Goodhart’s Law and Over-optimization. Goodhart’s Law states that “When a

measure becomes a target, it ceases to be a good measure” [49]. Thomas and Uminsky

[142] highlight how an over-reliance on metrics can lead to unintended consequences

across AI systems, and fairness measures are no exception. Over-optimizing for any

one metric in isolation risks degrading performance on others. For example, Table

7.3 shows that CLA’s focus on minimizing FNR leads to large drops in Precision and

F1, where it underperforms w.r.t. to both OE and GAP. As Friedler et al. [43] and

others have noted, different worldviews lead to conflicting definitions of fairness that

are mutually incompatible. Since one cannot have it all, specific fairness measures

must be selected (suitable to the given task, context, and stakeholders). In this work,

given the nature of the symmetric errors, we optimize a model to provide balanced

Accuracy Parity (AP) across demographic groups [160] via our GAP loss function.

Balanced Measure vs. Overall Performance. As its name reflects, OE opti-

mizes for cross-entropy (wBCE); it does not consider group (sub-population) perfor-

mance. Overall accuracy will be driven by several factors. First, under-represented

groups may suffer at the cost of benefiting the over-represented groups (i.e., group

96



prevalance). Second, even when groups are balanced, some groups may be intrinsi-

cally more difficult to model for a given task, and thus sacrificed in optimization to

benefit other groups. Since we train directly on the data (no over-/under- sampling),

using the training objective to achieve AP across groups, we are able to accommodate

both of the the cases above. Readers are referred to 2-group setting: e.g., Asian vs.

Black and White vs. Latinx pairs.

Improved Overall Performance with Balancing. For the 7-group setting in

Table 7.1, we notice that by optimizing for group-related errors alongside overall error

(OE), both GAP and CLA driven classifiers achieve better overall performance (in

terms of Avg. BA), as well as achieving their intended group-specific objective. This

observation goes a bit beyond traditional ML where the nature of Single Objective

Optimization (Eq. 6.1) forces one objective to be better at the expense of the other

objective, in absence of any alternate dominated solution sets [94]. Given that our

problem setup is Multi-Label classification (and correspondingly the architectural

setup is a series of one-vs rest classifier nodes), we hypothesize that the group indicator

gives an extra feature dimension for the classifier to consider, boosting it to learn

something more about the data than it would have without the group label. By

considering the group-associated terms, both loss functions have a modified surface

compared to OE, allowing convergence to a better optima. We see this pattern

emerging in some of the 2-group setting: e.g., the Latinx vs. Middle Eastern group.

Model Multiplicity [11] highlights the ability of a task to have variability in the

predictions generated by different models, although they perform with equal accuracy.

Such effects arise due to factors like data imbalance, inherent biases etc. A simple

case in our target-group detection setting could have three classifiers — trained with

three losses (OE, CLA and our GAP) — performing equally well in terms of overall

accuracy, yet differing widely in group-accuracy performance. In such a scenario,

AP provides valuable insight as a fairness measure by highlighting the amount of
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disparate impact across groups, with GAP having the least pairwise performance gap

across groups, amongst the three losses.

We present the performance across all four losses (OE, CLA, ADV and our

GAP) for some of the 2-group case to show different scenarios and performances.

Best values are bolded (higher for BA, lower for Diff.). For each loss, we also color

which group exhibits the maximum and minimum BA values achieved.

Balanced Accuracy (BA)

Loss Latinx Middle Eastern Avg. BA Diff.

OE 90.98 83.67 87.33 7.31
CLA 91.52 88.73 90.12 2.79
ADV 91.04 84.20 87.62 6.84

GAP 92.34 91.79 92.06 0.55

Table 7.5: Optimizing GAP results in improving overall error, indicating the group
label provides extra dimension for the loss to stabilize at a better local optima.

Balanced Accuracy (BA)

Loss Asian Black Avg. BA Diff.

OE 86.59 92.32 89.46 5.73
CLA 87.02 92.22 89.62 5.20
ADV 87.49 92.10 89.79 4.61

GAP 89.65 90.82 90.23 1.17

Table 7.6: Performance varies across groups due to their population size, where the
statistically major group dominates.

ADV [155] is an approximate adversarial loss for balancing FPR rates across

groups. We notice similar issues of convergence instability as observed in Xia et al.

[155]. Consequently, let ADV run for a fixed epochs and report the best BA value

achieved over iterations.
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Balanced Accuracy (BA)

Loss White Latinx Avg. BA Diff.

OE 88.89 82.19 85.54 6.70
CLA 88.20 85.55 86.87 2.65
ADV 88.18 82.19 85.18 5.99

GAP 88.36 86.23 87.29 2.13

Table 7.7: Groups have similar population, but performance varies due to one group
being more difficult to model.

Task Agnostic Measure. While in this work we explicitly focus around fair target-

group detection, our proposed measure GAP is model, task, and dataset agnostic

i.e., it is designed to push for equal accuracy numbers across groups with arbitrarily

defined groups. Thus, balancing between accuracy vs. fairness is not exclusive to the

task of Toxic Language Detection, and can be extended to other problems, datasets,

and models. It can also be used to for classifiers involving groups, sets or categories.

Exploring Fairness tasks with Symmetric Errors. By recognizing and incor-

porating symmetric error (i.e., type I and type II errors are equally harmful) con-

siderations into fairness tasks, we not only enhance the fairness of our target-group

detection model but also open avenues to explore real-life scenarios addressing similar

scenarios, challenges and needs in other domains. By acknowledging and addressing

the symmetric nature of errors across groups, we can achieve a balanced perspective

on fairness and more equitable outcomes in algorithmic decision-making processes.

Author Demographics vs. Target Demographics. While author demographics

[12] focuses on identifying group tags about the post’s author, identifying Target

Demographics involves determining group tags of post when its directed towards

specific groups or communities [37, 74]. In scenarios involving sensitive topics or

potentially toxic language, such group identification becomes crucial. For example, a
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post containing racially charged language maybe indicative of targeting a particular

demographic group as a slur. However, the interpretation of such language may vary

depending on the context of interaction. If both the author and the target belong

to the same demographic, the use of such language may be considered as a friendly

banter or colloquial communication within that group only. Conversely, if the author

does not belong to the targeted group, the same language may be considered more

likely as toxic, reflecting potential discriminatory behavior. Thus, both author and

target demographics need to be considered jointly to combat toxic language.

Target group identification and Large Language Models. The task of fair

target group detection can also be relevant in the context of training and deploying

Large Language Models (LLMs). Existing studies have found that LLMs contain bias

with respect to protected characteristics such as gender and race [76, 105]. Explicitly

incorporating target group detection during training and fine-tuning via reinforcement

learning from human feedback (RLHF) is a promising direction for reducing LLM bias.
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Chapter 8: Conclusion

In this dissertation, I explored two core and parallel challenges in the domain

of toxic language detection: (1) improving predictive performance and fairness in toxi-

city detection across multiple demographic groups using Multi-Task Learning (MTL);

and (2) balancing competing objectives between a specific variant of group fairness

and overall accuracy. While my application focus was exclusively on toxic language

detection, the frameworks and methodologies developed here are more broadly appli-

cable to other NLP tasks involving fairness, scalability and trade-offs in optimization.

By addressing the limitations of traditional approaches in capturing demo-

graphic specific patterns of toxicity and balancing competing fairness objectives, the

research here lays the groundwork for more equitable and effective NLP systems. Our

findings underscore the importance of considering both shared and unique aspects of

toxic language across demographic groups, while also providing tools for navigating

the complex trade-offs between accuracy and fairness. As toxic language detection

continues to evolve as a field, the frameworks and insights presented in this dis-

sertation offer a foundation for building more nuanced and fair NLP models. These

contributions lay the groundwork for more robust, scalable, and fair NLP models that

extend beyond toxic language detection to other domains with similar challenges.

8.1 Summary of Methodological Contributions

We provide a summarization of the methodological contributions. Although

in this thesis, we explicitly focus on toxicity detection as the downstream task, our

proposed methods are more general and can be applied to a wide variety of NLP

tasks or similar domains in physical and medical sciences.
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Framework 1: Multi-Task Learning for Group-Targeted Classification. We

developed classification models where the expression of data varies significantly across

groups, making a one-size-fits-all approach suboptimal. To address these challenges,

we developed the Conditional Multi-Task Learning (CondMTL) framework, which

leverages both shared and group-specific model layers. This design strikes a balance

between generalization and specialization, enabling the model to perform well across

multiple groups despite the variations in how toxicity manifests across them. Build-

ing on CondMTL, we proposed SAJS-MTL (Stakeholder-Aware Joint Scalable MTL),

which extends the model to account for the joint interaction between different stake-

holders. This framework captures both inter-group (across groups) and inter-group

(within a group) disagreements, ensuring more nuanced predictions. Furthermore,

SAJS-MTL is optimized for scalability, ensuring computational efficiency even as the

cardinality of stakeholder group grows. These frameworks go beyond the conventional

one-size-fits-all approaches by jointly modeling multiple tasks and groups while en-

suring fairness, scalability, and predictive performance across diverse groups. The

improved performance of these models compared to state-of-the-art (SoA) baselines

highlights their potential for improving both the fairness and accuracy of toxicity

detection. NLP applications where our MTL frameworks are applicable include Sen-

timent Analysis [63], Fake News [79], Misinformation [78], Content Moderation [136],

Healthcare [64] etc. Physical, chemical and medical sciences domains like Climate

Modeling [116], Material Design [108], Drug Discovery [82], Structural Engineering

[149], Energy Systems Optimization [141], Biomedical Imaging and Disease Detec-

tion [87], Robotics and Control Systems [156] etc. can also gain advantage from such

group-specific modeling along with joint interaction of stakeholders.

Framework 2: Balancing Fairness and Accuracy through Multi-Objective

Optimization. The second problem tackled in this work focuses on fairness mea-

sures and Pareto trade-off via Multi Objective Optimization. We developed a dif-

ferentiable variant of the Accuracy Parity fairness measure called Group Accuracy
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Parity (GAP), which can be used as a loss function to train a descent-based model to

optimize for balanced accuracy across groups. To trade-off between competing objec-

tives, we introduced the HNPF (Hypernetwork-based Multi-Objective Optimization

Framework), which enables a model to explore the trade-off space during training,

offering flexibility for users to adjust trade-offs at runtime. We further extended

this framework to SUHNPF, a scalable variant capable of handling large-scale neural

models. Our GAP fairness measure is applicable in various recommendation sys-

tems involving groups [96]. The SUHNPF hypernetwork is highly generalizable and

can be applied in various domains such as economics [121], healthcare [73], finance

[102], criminal justice [88] etc. Through scalable optimization, these methods provide

practitioners with the flexibility to adapt trade-offs based on the specific needs and

constraints, helping to build more equitable and accountable AI systems.

8.2 Summary of Domain Contributions

The proposed work advances the field of toxicity detection by addressing key

challenges related to group-specific modeling, predictive performance, fairness and

scalability. Traditional toxicity detection models often treat all demographic groups

similarly, which overlooks the fact that toxicity manifests differently across groups.

Additionally, such models are prone to bias when trained on datasets with skewed

demographic distributions, leading to performance degradation for minority groups.

This dissertation makes several important contributions to mitigate these challenges:

1. Group-Specific Modeling through Multi-Task Learning (MTL). The

development of the Conditional Multi-Task Learning (CondMTL) framework allows

for simultaneous learning of both shared and group-specific features of toxic lan-

guage. This framework enables the model to generalize across diverse demographic

groups while capturing the unique ways toxicity is expressed toward specific target

groups. This adaptive modeling ensures that groups with distinct patterns of toxic
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language are not overlooked, resulting in more nuanced and accurate predictions.

This contribution addresses a major gap in previous models that applied a one-size-

fits-all approach, improving both fairness and predictive performance. The proposed

conditional labeling schema establishes an accurate way of labeling group-targeted

examples without causing unintended label bias, resulting in accurate modeling.

2. Stakeholder-Aware Joint Modeling for Real-World Applications. The

extension of CondMTL to SAJ-MTL (Stakeholder-Aware Joint MTL) incorporates

the interactions between different stakeholders (e.g., annotators and targets) into the

model. This framework accounts for both inter-group and intra-group disagreements,

which is essential for real-world platforms where multiple communities coexist. Fur-

thermore, SAJ-MTL is optimized for scalability, ensuring that the model can handle

a large and growing number of demographic groups without sacrificing computational

efficiency. This makes the proposed work applicable to dynamic, large-scale systems

such as social media platforms and online content moderation tools.

3. Balancing Fairness and Accuracy with Group Accuracy Parity (GAP).

A contribution of this work is the introduction of the Group Accuracy Parity (GAP)

measure, which ensures Accuracy Parity across demographic groups by balancing

model performance evenly across all groups. Unlike conventional fairness metrics,

GAP addresses the challenge of symmetric error costs, ensuring that misclassifications

between any two demographic groups (e.g., Black vs. Latinx ) are treated equally.

The GAP measures provides a practical loss function for enforcing group fairness in

classification while addressing the biases inherent in skewed datasets.

4. Multi-Objective Optimization with HNPF and SUHNPF. To balance

between competing objectives, we introduce the HNPF framework, which allows the

model to learn and explore the trade-off space between fairness and accuracy during

training, providing users with the flexibility to adjust these trade-offs in real-time
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based on evolving needs. The scalable extension, SUHNPF, ensures that the opti-

mization framework can handle large neural models and datasets with multiple demo-

graphic groups, making it suitable for high-throughput content moderation systems.

5. Theoretical Insights into Fairness Metrics. A key theoretical contribution

of this work is the discovery of an impossibility theorem between Accuracy Parity

and Equalized Odds, addressing a common misconception that achieving Equalized

Odds will automatically ensure satisfying Accuracy Parity. This insight highlights the

inherent trade-offs between fairness measures and helps practitioners choose appropri-

ate metrics based on their specific context and goals. This contribution ensures that

future work in toxicity detection is better aligned with real-world fairness constraints.

6. Impact on Platform Moderation and Fair Content Delivery. Our pro-

posed frameworks offer significant improvements for platforms engaged in content

moderation and automated toxicity detection. By incorporating group-specific pat-

terns, stakeholder interactions, and scalable fairness mechanisms, the models devel-

oped in this work help ensure fairer content moderation across diverse demographic

groups. This work equips platforms with the tools needed to balance fair treatment

across communities while maintaining sufficient accuracy for majority groups, ensur-

ing that both minority and dominant communities are served equitably.

8.3 Remaining Challenges and Open Questions

8.3.1 Modeling Annotator Labels as Confidence Scores

A promising avenue for future work involves treating annotator labels as con-

fidence scores rather than fixed binary labels. In toxicity detection tasks, annotators

may often express varying degrees of certainty in assigning labels, as they are not

always fully confident about categorizing content as definitively toxic or non-toxic

[111, 134]. By modeling annotator labels as soft labels or probabilistic confidence
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scores, the model can better capture the inherent uncertainty and subjectivity of

these annotations, thereby learning from the variability across annotators [114]. This

strategy could yield more robust predictions by accounting for cases where content

might be perceived as ambiguously toxic or non-toxic, depending on the annotator’s

perspective. Techniques such as label smoothing, probabilistic modeling, or fuzzy

labels could be applied to operationalize this concept [14]. Moreover, incorporating

annotator confidence scores could also help mitigate biases, particularly when some

annotators are more sensitive or lenient in their judgments, by adjusting the weight

of their contributions during model training [119].

8.3.2 Modeling Target Labels as Confidence Scores

Another important and parallel direction is modeling target group(s) as con-

fidence scores, rather than treating them as fixed, binary attributes. In toxicity de-

tection tasks, target group(s) identity (e.g., race, gender, religion) are often inferred

automatically (through a noisy oracle) or provided based on imperfect annotations

(inference based on content of post), which can introduce uncertainty and noise [28].

By representing these identity scores as soft labels or probabilistic confidence scores,

the model can better reflect the uncertainty in identifying the true target of a toxic

comment. This approach would enable the system to assign varying levels of con-

fidence to each potential target identity, rather than forcing a hard decision. Such

probabilistic modeling could also improve the robustness of the toxicity detection

pipeline by allowing the model to account for cases where the target identity is am-

biguous or unclear, e.g., a comment may seem toxic towards multiple groups, or its

target might not be explicitly stated [129].

8.3.3 Graphical Modeling of the MTL Pipeline

While Multi Task Learning (MTL) frameworks are effective for capturing task

relationships in toxicity detection, explicitly modeling the dependencies and uncer-
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tainties between these tasks using probabilistic graphical models could significantly

enhance performance [75]. By leveraging graphical models such as Bayesian networks

or Conditional Random Fields, we can capture the joint probabilistic dependencies

between the toxic language detection task and the target identity detection task,

allowing the model to reason over both tasks simultaneously.

Incorporating graphical models into the pipeline would enable the system to

explicitly represent uncertainties at various stages, such as in the prediction of target

identities or the classification of group-conditioned toxic posts. This approach is

especially important in cases where target identity detection itself is a noisy process.

For example, a comment may target multiple groups, or the target might be inferred

with limited confidence. Jointly modeling these tasks in a probabilistic framework

would allow the system to propagate uncertainty from the target detection pipeline

to the toxicity detection pipeline, making the toxicity predictions more robust.

Furthermore, graphical modeling enables more efficient inference and decision-

making, particularly when the pipelines operate in parallel. By structuring the depen-

dencies between tasks, the modeler can prioritize certain tasks or weight the output

of the target detection pipeline based on the certainty of its predictions. Techniques

such as variational inference or Markov Chain Monte Carlo could be applied to make

this system scalable to large datasets [103]. This modeling approach would be espe-

cially valuable in real-world scenarios where both toxicity and target identification are

prone to errors, helping to build a more accurate and fair toxicity detection system.

For instance, one can design a Graphical Model for the Multi-Task Learning

framework by treating the input features, shared representations, and task-specific

outputs as random variables with associated probability distributions. Let’s define

the prior distributions, likelihood functions, and posterior distributions as follows:

• Input Features (X): Feature vector of the tweet, with prior distribution P (X)

as a multivariate distribution, P (X) ∼ N(µX ,ΣX), where µX and ΣX are the

mean vector and covariance matrix of the input features.
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• Shared Latent Variable (Z): Shared latent representation derived from the in-

put features X, with prior distribution P (Z), where Z is a non-linear trans-

formation (ϕ) with additive Gaussian noise as Z = Wϕ(X) + ϵz, where W

is a weight matrix and ϵZ ∼ N(0,ΣZ). The conditional distribution is then

P (Z|X) ∼ N(WXϕ(X) + bX ,ΣZ), where WX is the weight matrix mapping X

to the latent space Z, bX is the bias term, and the covariance matrix ΣZ models

the uncertainty in Z.

• Group-Specific Output Variables (Yi): Binary output (toxic/non-toxic) for each

demographic group Gi, with likelihood function P (Yi|Z), where Yi can be mod-

eled using a logistic regression P (Yi = 1|Z) = σ(W T
i Z + bi), where σ is sigmoid

function, and Wi and bi are the task-specific weight and bias parameters. The

likelihood can be modeled as a Bernoulli distribution where Yi represents the

probability of the tweet being toxic towards group Gi. Yi ∼ Bernoulli(pi).

Figure 8.1: A simplistic Graphical model to represent the workings of the Conditional
MTL model. X,Z, Y represents the input features, shared latent variable and group-
specific output variables respectively.

The posterior distribution for each Task-Specific Outputs (Yi) given the input

X and the latent variable Z can be derived using Bayes’ theorem:

P (Yi|X) ∝ P (Yi|Z)P (Z|X)
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To perform inference, we can estimate the posterior distribution P (Yi|X) for each

group-specific output by sampling Z from its posterior distribution P (Z|X) and com-

puting the likelihood P (Yi|Z) for each task i, and finally aggregating results to obtain

the posterior predictive distribution for each Yi.

However, we need accompanying data to support simulations, that the pro-

posed graphical modeling requires. For our given dataset, we have limited samples to

infer any hyper-parameters or have a good estimate of the likelihoods and posteriors.

Therefore, we keep the verification of this modeling approach as an open question.

8.3.4 Exploring Other Fairness Metrics and Constraints

Another important area is the exploration of alternative fairness metrics and

constraints for toxicity detection. While Accuracy Parity and Equalized Odds were

central to this dissertation, different fairness notions may be more appropriate de-

pending on the use case or platform requirements. Toxic language detection operates

in high-stakes settings, where balancing fairness across groups (e.g., racial or gender

identities) requires careful consideration of biases introduced by both model predic-

tions and underlying datasets [100].

A promising research is individual fairness, which requires treating similar

individuals similarly [33]. In the context of toxicity detection, this could involve

ensuring that two comments with similar levels of toxicity (but directed at differ-

ent groups) are treated consistently by the model. Implementing individual fairness

would require similarity-based regularization constraints to align predictions for sim-

ilar inputs, which could complement the group-based fairness metrics currently used.

Another alternative is Subgroup Fairness, which ensures fair treatment not

just for large demographic groups (e.g., ‘race’ or ‘gender’) but also for intersectional

subgroups (e.g., Black women, queer Latinx etc.). This is essential because intersec-

tional groups may experience distinct forms of discrimination that are not captured

by traditional group-level metrics [17]. Future work could extend the current frame-
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works to intersectional multi-task learning architectures, ensuring fairness across both

primary and intersectional subgroups.

8.3.5 Expansion to Multi-Lingual and Cross-Domain Toxicity Detection

A potential avenue is the expansion of the MTL framework to multi-lingual and

cross-domain settings, where linguistic, cultural, and contextual variations influence

the expression and perception of toxic language. Since toxicity is expressed differ-

ently across languages and domains, incorporating language-specific task branches

along with domain-aware optimization objectives could further enhance the robust-

ness and applicability of these models. Potential application areas include social

media platforms, forums, or news outlets with wide demographic coverage.

In this context, language-agnostic word embeddings such as those from mBERT

or XLM-R can be used to represent text, allowing shared knowledge transfer across

languages [22]. The SAJS-MTL framework could be extended to include both target-

group branches and language-specific branches, enabling simultaneous handling of

demographic, community, and linguistic variations. In cross-domain settings, the

type and prevalence of toxic language often vary depending on the platform or con-

text (e.g., Reddit vs. Twitter), and models trained on one platform tend to struggle

on others due to domain shift [139]. This motivates the need for domain-aware learn-

ing, where the MTL framework could include domain-specific task branches while

still using shared layers to capture general toxic patterns across platforms.

8.3.6 LLMs for Group Targeted Toxicity Detection

Large language models (LLMs) such as GPT-4 have demonstrated the abil-

ity to learn patterns and language use specific to different demographics, including

subtle forms of toxicity. These models capture nuanced linguistic variations across

different communities, making them promising tools for demographic-specific toxicity

detection. By learning from diverse datasets, LLMs can detect how toxic language
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manifests uniquely for various social groups, such as microaggressions toward women,

slurs directed at ethnic minorities, or discriminatory remarks against religious groups.

However, the extent to which an LLM can effectively learn demographic-

specific forms of toxicity depends heavily on the quality, diversity, and representative-

ness of the training data. If the training data lacks coverage for specific groups or con-

tains disproportionate examples of toxicity for certain communities, the model may

perform unevenly across demographics, thereby reinforcing systemic biases. Careful

curation and balancing of datasets that reflect the experiences of marginalized groups,

while minimizing harmful stereotypes is essential for building reliable models [8].

Ethical considerations must guide the development and deployment of LLMs

for demographic-specific toxicity detection. Training models on data that contains

toxic language, even for detection purposes, risks reinforcing or amplifying harmful

stereotypes and biases [12]. As such, rigorous evaluation for fairness, bias, and unin-

tended consequences is crucial. Model evaluation should consider it’s ability to handle

intersectional identities without propagating biased outputs. Moreover, explainabil-

ity techniques can be integrated to ensure that stakeholders understand the decisions

made by the model and can identify cases of bias or unintended harms [118].
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